[1] HODGES D H, HOPKINS A S, KUNZ D L. Analysis of structures with rotating, flexible substructures applied to rotorcraft aeroelasticity[J]. AIAA Journal, 1987, 27(2): 192-200. [2] HODGES D H. A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams[J]. International Journal of Solids and Structures, 1990, 26(11): 1253-1273. [3] FULTON M V, HODGES D H. Aeroelastic stability of composite hingeless rotor blades in hover-Part Ⅰ: theory[J]. Mathematical and Computer Modelling, 1993, 18(3-4): 1-18. [4] FULTON M V, HODGES D H. Aeroelastic stability of composite hingeless rotor blades in hover-Part Ⅱ: results[J]. Mathematical and Computer Modelling, 1993, 18(3-4): 19-35. [5] SHANG X Y. Aeroelastic stability of composite hingless rotors with finite-state unsteady aerodynamics[D]. Atlanta, Georgia: Georgia Institute of Technology, 1995. [6] CHENG T. Structural dynamics modelling of helicopter blades for computational aeroelasticity[D]. Cambridge, Massachusetts, Department of Aeronautics and Astronautics, Massachusetts’s Institute of Technology: 2002. [7] DEWEY H H, SHANG X Y, CARLOS E S C. Finite element solutions of non-linear intrinsic equations for curved composite beams[J]. Journal of the American Helicopter Society, 1996, 41(4): 313-321. [8] MINGUET P, DUGUNDJI J. Experiments and analysis for composite blades unger large deflections part Ⅰ: static behavior[J]. AIAA Journal, 1990, 28(9): 1573-1579. [9] MINGUET P, DUGUNDJI J. Experiments and analysis for composite blades unger large deflections part Ⅱ: dynamic behavior[J]. AIAA Journal, 1990, 28(9): 1580-1588. [10] PETERS D A, IZADPANAH A P. Hp-version finite elements for the space-time domain[J]. Computational Mechanics, 1988, 3(2): 73-88. [11] KIM B O, LEE A S. A transient response analysis in the state-space applying the average velocity concept[J]. Journal of Sound and Vibration, 2005, 281: 1023-1035. [12] BAUCHAU O A, KANG N K. A multibody formulation for helicopter structural dynamic analysis[J]. Journal of American Helicopter Society, 1993, 38: 3-14. [13] BAUCHAU O A, THERON N J. Energy decaying schemes for nonlinear beam models[J]. Computation Methods Application Mechanics Engineering, 1996, 134: 37-56. [14] BAUCHAU O A, BOTTASSO C L, NIKISHNOW Y G. Modeling rotorcraft dynamics with finite element multibody procedures[J]. Mathematical and Computer Modelling, 2001, 33: 1113-1117. [15] LEE H K, VISWAMURTHY S R, Park S C etc. Helicopter rotor load prediction using a geometrically exact beam with multicomponent model[J]. Journal of Aircraft, 2010, 47(4): 1382-1390. |