[1] OLABI A G, WILBERFORCE T, ABDELKAREEM M A. Fuel cell application in the automotive industry and future perspective[J]. Energy, 2021, 214: 118955. [2] 秦玉琪, 袁奕雯, 杨振国. 纤维缠绕储氢气瓶及燃料汽车应用现状综述[J]. 中国特种设备安全, 2019, 35(2): 70-75. [3] O’MALLEY K, ORDAZ G, ADAMS J, et al. Applied hydrogen storage research and development: A perspective from the U.S. Department of Energy[J]. Journal of Alloys & Compounds, 2015, 645: 419-422. [4] WANG Y, DAI X, YOU H, et al. Research on the design of hydrogen supply system of 70 MPa hydrogen storage cylinder for vehicles[J]. International Journal of Hydrogen Energy, 2018, 43(41): 19189-19195. [5] REN M F, CHANG X, XU H Y, et al. Trans-scale analysis of composite overwrapped pressure vessel at cryogenic temperature[J]. Composite Structures, 2017, 160: 1339-1347. [6] LIU P F, CHU J K, HOU S J, et al. Micromechanical damage modeling and multiscale progressive failure analysis of composite pressure vessel[J]. Computational Materials Science, 2012, 60: 137-148. [7] RAMIREZ J P B, HALM D, GRANDIDIER J C, et al. 700 bar type Ⅳ high pressure hydrogen storage vessel burst-simulation and experimental validation[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13183-13192. [8] JOHANSEN B S, LYSTRUP A, JENSEN M T. CADPATH : A complete program for the CAD-, CAE-and CAM-winding of advanced fibre composites[J]. Journal of Materials Processing Technology, 1998, 77(1): 194-200. [9] RAFIEE R, TORABI M A. Stochastic prediction of burst pressure in composite pressure vessels[J]. Composite Structures, 2018, 185: 573-583. [10] ZU L, XU H, WANG H B, et al. Design and analysis of filament wound composite pressure vessels based on non-geodesic winding[J]. Composite Structures, 2019, 207: 41-52. [11] ZU L, KOUSSIOS S, BEUKERS A. A novel design solution for improving the performance of composite toroidal hydrogen storage tanks[J]. International Journal of Hydrogen Energy, 2012, 37(19): 14343-14350. [12] ZU L, XU H, ZHANG Q, et al. Design of filament-wound spherical pressure vessels based on non-geodesic trajectories[J]. Composite Structures, 2019, 218: 71-78. [13] ZHANG Q, XU H, JIA X, et al. Design of a 70MPa type Ⅳ hydrogen storage vessel using accurate modeling techniques for dome thickness prediction[J]. Composite Structures, 2020, 236:111915. [14] 赫晓东, 王荣国, 矫维成, 等. 纤维缠绕复合材料压力容器封头厚度预测[J]. 复合材料学报, 2010, 27(5): 116-121. [15] 王华毕, 程硕, 祖磊, 等. 复合材料储氢气瓶的纤维厚度预测与强度分析[J]. 复合材料科学与工程, 2020(5): 5-11. [16] NEBE M, SORINNO A, BRAUN C, et al. Analysis on the mechanical response of composite pressure vessels during internal pressure loading: FE modeling and experimental correlation[J]. Composites Part B: Engineering, 2021, 212: 108550. [17] 惠虎, 柏慧, 黄淞, 等. 纤维缠绕复合材料压力容器的研究现状[J]. 压力容器, 2021, 38(4): 53-63. [18] PIEGL L, TILLER W. 非均匀有理B样条[M]. 北京: 清华大学出版社, 2010. [19] 贾利勇, 富琛阳子, 贺高, 等. ABAQUS GUI程序开发指南Python语言[M]. 北京: 人民邮电出版社, 2014. [20] 苏景鹤, 江丙云. ABAQUS Python二次开发攻略[M]. 北京: 人民邮电出版社, 2016. [21] 陈汝训. 纤维缠绕壳体设计的网格分析方法[J]. 固体火箭技术, 2003, 26(1): 30-32. [22] 贾子璇, 林松, 贾晓龙, 等. 基于渐进损伤数值模拟的复合材料气瓶爆破压强优化[J]. 复合材料科学与工程, 2020(8): 25-31. [23] HASHIN Z. Failure criteria for unidirectional fiber compositer[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. [24] CAMANHO P P, MATTHEWS F L. A progressive damage model for mechanically fastened joints in composite laminates[J]. Journal of Composite Materials, 1999, 33(24): 2248-2280. [25] WANG Q, LI T, WANG B, et al. Prediction of void growth and fiber volume fraction based on filament winding process mechanics[J]. Composite Structures, 2020, 246: 112432. [26] 杨帆. 冲击作用下复合材料气瓶损伤形态与剩余强度[D]. 大连: 大连理工大学, 2019. [27] 车用压缩氢气铝内胆碳纤维全缠绕气瓶: GB/T 35544—2017[S]. 北京: 中国标准出版社, 2017. |