[1] ZUO H, YANG Z, CHEN X, et al. Analysis of laminated composite plates using wavelet finite element method and higher-order plate theory[J]. Composite Structures, 2015, 131: 248-258. [2] HONDA S, NARITA Y. Natural frequencies and vibration modes of laminated composite plates reinforced with arbitrary curvilinear fiber shape paths[J]. Journal of Sound and Vibration, 2012, 331(1): 180-191. [3] 李泉. 人致激励下大跨人行桥及楼盖随机振动及优化控制[D]. 北京: 清华大学, 2010. [4] 肖文科. 正弦振动与随机振动对飞机结构的影响关系研究[D]. 沈阳: 沈阳航空工业学院, 2008. [5] ZHIXIANG Y U, GUANGHUA H U, TONGMEI L I, et al. Analysis of vibration reduction and vibration measurement for long-span railway station floor slab[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 296-303, 342. [6] AMBARTSUMIAN S A. On the theory of bending plates[J]. Izv Otd Tech Nauk AN SSSR, 1958, 5(5): 69-77. [7] AYDOGDU M, ECE M C. Buckling and vibration of non-ideal simply supported rectangular isotropic plates[J]. Mechanics Research Communications, 2006, 33(4): 532-540. [8] CHAKRABARTI A, SHEIKH A H. Vibration of laminate-faced sandwich plate by a new refined element[J]. Journal of Aerospace Engineering, 2004, 17(3): 123-134. [9] REDDY J N. Mechanics of laminated composite plates and shells: Theory and Analysis[M]. CRC Press, 2003. [10] TAN P, NIE G J. Free and forced vibration of variable stiffness composite annular thin plates with elastically restrained edges[J]. Composite Structures, 2016, 149: 398-407. [11] CIVALEK Ö. Free vibration and buckling analyses of composite plates with straight-sided quadrilateral domain based on DSC approach[J]. Finite Elements in Analysis and Design, 2007, 43(13): 1013-1022. [12] RIBEIRO P. Forced periodic vibrations of laminated composite plates by a p-version, first order shear deformation, finite element[J]. Composites Science and Technology, 2006, 66(11-12): 1844-1856. [13] ZHU C D, YANG J. Free and forced vibration analysis of composite laminated plates[C]//The 26th International Congress on Sound and Vibration. 2019. [14] ZHU C, YANG J, RUDD C. Vibration transmission and energy flow analysis of L-shaped laminated composite structure based on a substructure method[J]. Thin-Walled Structures, 2021, 169: 108375. [15] ZHU C. Vibration power flow analysis of laminated composite structures[D]. UK: University of Nottingham, 2021. [16] ZHU C, YANG J, RUDD C. Vibration transmission and power flow of laminated composite plates with inerter-based suppression configurations[J]. International Journal of Mechanical Sciences, 2021, 190: 106012. [17] ZHU C, YANG J. Vibration analysis of harmonically excited antisymmetric cross-ply and angle-ply laminated composite plates[C]//Vibration Engineering for a Sustainable Future: Experiments, Materials and Signal Processing. 2021: 129. [18] ALIBEIGLOO A, KARI M R. Forced vibration analysis of antisymmetric laminated rectangular plates with distributed patch mass using third order shear deformation theory[J]. Thin-Walled Structures, 2009, 47(6-7): 653-660. [19] REDDY J N. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics, 1984, 51(4): 745-752. [20] AGHABABAEI R, REDDY J N. Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates[J]. Journal of Sound and Vibration, 2009, 326(1-2): 277-289. [21] SOLDATOS K P. A transverse shear deformation theory for homogeneous monoclinic plates[J]. Acta Mechanica, 1992, 94(3-4): 195-220. [22] GHUGAL Y M, PAWAR M D. Buckling and vibration of plates by hyperbolic shear deformation theory[J]. Journal of Aerospace Engineering and Technology, 2011, 1(1): 1-12. [23] ALIBEIGLOO A, SHAKERI M, KARI M R. Free vibration analysis of antisymmetric laminated rectangular plates with distributed patch mass using third-order shear deformation theory[J]. Ocean Engineering, 2008, 35(2): 183-190. [24] MESSINA A, SOLDATOS K P. A general vibration model of angle-ply laminated plates that accounts for the continuity of interlaminar stresses[J]. International Journal of Solids and Structures, 2002, 39(3): 617-635. [25] HOSSEINI-HASHEMI S, ZARE M, NAZEMNEZHAD R. An exact analytical approach for free vibration of Mindlin rectangular nano-plates via nonlocal elasticity[J]. Composite Structures, 2013, 100: 290-299. [26] THAI H T, KIM S E. Levy-type solution for free vibration analysis of orthotropic plates based on two variable refined plate theory[J]. Applied Mathematical Modelling, 2012, 36(8): 3870-3882. [27] CETKOVIC M, VUKSANOVIC D. Vibrations of isotropic, orthotropic and laminated composite plates with various boundary conditions[J]. Journal of Serbian Society for Computational Mechanics, 2012, 6(1): 83-96. [28] CHALAK H D, CHAKRABARTI A, IQBAL M, et al. Free vibration analysis of laminated soft core sandwich plates[J]. Journal of Vibration and Acoustics, 2013, 135(1): 011013. [29] LEE W H, HAN S C. Free and forced vibration analysis of laminated composite plates and shells using a 9-node assumed strain shell element[J]. Computational Mechanics, 2006, 39(1): 41-58. [30] JIANG C H, KAM T Y. Vibration analysis of elastically restrained laminated composite sound radiation plates via a finite element approach[J]. Procedia Engineering, 2013, 67: 545-558. [31] CHAKRAVERTY S, JINDAL R, AGARWAL V K. Effect of non-homogeneity on natural frequencies of vibration of elliptic plates[J]. Meccanica, 2007, 42(6): 585-599. [32] WATKINS R J, BARTON JR O. Characterizing the vibration of an elastically point supported rectangular plate using eigensensitivity analysis[J]. Thin-walled structures, 2010, 48(4-5): 327-333. [33] MAKHECHA D P, GANAPATHI M, PATEL B P. Dynamic analysis of laminated composite plates subjected to thermal/mechanical loads using an accurate theory[J]. Composite Structures, 2001, 51(3): 221-236. [34] LIEW K M, ZHANG J Z, NG T Y, et al. Dynamic characteristics of elastic bonding in composite laminates: A free vibration study[J]. Journal of Applied Mechanics, 2003, 70(6): 860-870. [35] XIANG S, KANG G. Local thin plate spline collocation for free vibration analysis of laminated composite plates[J]. European Journal of Mechanics-A/Solids, 2012, 33: 24-30. [36] XIANG S, WANG K, AI Y, et al. Natural frequencies of generally laminated composite plates using the Gaussian radial basis function and first-order shear deformation theory[J]. Thin-Walled Structures, 2009, 47(11): 1265-1271. [37] BAHMYARI E. Free and forced vibration analysis of moderately thick plates with uncertain material properties using the Chaotic Radial Basis Function[J]. Engineering Analysis with Boundary Elements, 2019, 106: 349-358. [38] CUI X Y, LIU G R, LI G Y. Bending and vibration responses of laminated composite plates using an edge-based smoothing technique[J]. Engineering Analysis with Boundary Elements, 2011, 35(6): 818-826. [39] THINH T I, NGUYEN M C. Dynamic stiffness matrix of continuous element for vibration of thick cross-ply laminated composite cylindrical shells[J]. Composite Structures, 2013, 98: 93-102. [40] LEI Z X, ZHANG L W, LIEW K M. Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method[J]. Composite Structures, 2015, 127: 245-259. [41] TATTING B, GÜRDAL Z. Analysis and design of tow-steered variable stiffness composite laminates[C]//American Helicopter Society Hampton Roads Chapter, Structure Specialists’ Meeting. Williamsburg, VA: 2001. [42] FUKUNAGA H, SEKINE H, SATO M. Optimal design of symmetric laminated plates for fundamental frequency[J]. Journal of Sound and Vibration, 1994, 171(2): 219-229. [43] ABDALLA M M, SETOODEH S, GüRDAL Z. Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters[J]. Composite Structures, 2007, 81(2): 283-291. [44] HONDA S, OONISHI Y, NARITA Y, et al. Vibration analysis of composite rectangular plates reinforced along curved lines[J]. Journal of System Design and Dynamics, 2008, 2(1): 76-86. |