[1] RAFEI M, GHOREISHY M H R, NADERI G. Thermo-mechanical coupled finite element simulation of tire cornering characteristics effect of complex material models and friction law[J]. Mathematics and Computers in Simulation, 2018, 144: 35-51. [2] 刘海健, 崔海涛, 张宏建, 等. 粒子分离器鼓包柔性复合材料的本构模型研究[J]. 推进技术, 2019, 40(8): 1869-1875. [3] GEORGIEVA H, PAVLOV N, KUNCHEV L. Tester for study the influence of tire vertical load and tire internal pressure on tire cornering stiffness[J]. Applied Mechanics and Materials, 2016, 3577(822-822): 89-93. [4] PENG X Q, DING F F. Validation of a non-orthogonal constitutive model for woven composite fabrics via hemispherical stamping simulation[J]. Composites Part A, 2011, 42(4): 400-407. [5] 许男, 周健锋, 郭孔辉, 等. 胎压载荷耦合效应下复合工况UniTire轮胎模型[J]. 机械工程学报, 2020, 56(16): 193-203. [6] GHOREISHY M H R. Finite element analysis of steady rolling tyre with slip angle: effect of belt angle[J]. Plastics, Rubber and Composites, 2006, 35(2): 83-90. [7] 孙书蕾, 陈文国. 橡胶-帘线增强复合材料的本构模型及数值模拟[J]. 机械设计与制造, 2021(3): 53-56. [8] 郭国栋, 彭雄奇, 赵宁. 一种考虑剪切作用的各向异性超弹性本构模型[J]. 力学学报, 2013, 45(3): 451-455. [9] PENG X Q, CAO J. A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics[J]. Composites Part A, 2004, 36(6): 859-874. [10] 黄小双, 姚远, 彭雄奇, 等. 考虑双拉耦合的复合材料编织物各向异性超弹性本构模型[J]. 复合材料学报, 2016, 33(10): 2319-2324. [11] 周建雄, 魏志刚, 毛欢, 等. 各向同性超弹性本构模型数值计算及验证[J]. 计算力学学报, 2022, 39(4): 523-530. [12] SUN X Q, HU W W, CAI Y F. Data-based identification of the tire cornering properties via piecewise affine approximation[J]. International Journal of Automotive Technology, 2021, 22(3): 631-641. [13] ZEINAB E S, MOUSTAFA E G. Cornering characteristics of a truck tire on wet surface using finite element analysis and smoothed-particle hydrodynamics[J]. International Journal of Dynamics and Control, 2018, 6(4): 1567-1576. [14] HASSAN M A, ABDELKAREEM M, TAN G, et al. Conflict and sensitivity analysis of vehicular stability using a two-state linear bicycle model[J]. Shock and Vibration, 2021, 2021(5): 1-17. [15] HORGAN C O, MURPHY J G. A model for fibre-matrix interaction in non-linearly elastic incompressible orthotropic materials[J]. Journal of Engineering Mathematics, 2021, 127(1): 1-9. [16] 黄小双, 彭雄奇, 张必超. 帘线/橡胶复合材料各向异性黏-超弹性本构模型[J]. 力学学报, 2016, 48(1): 140-145. [17] FERNANDEZ M, JAMSHIDIAN M, BHLKE T. Anisotropic hyperelastic constitutive models for finite deformations combining material theory and data-driven approaches with application to cubic lattice metamaterials[J]. Computational Mechanics, 2021, 67: 653-677. [18] 肖锐, 向玉海, 钟旦明, 等. 考虑缠结效应的超弹性本构模型[J]. 力学学报, 2021, 53(4): 1028-1037. [19] RAO S G, DANIEL I M, GDOUTOS E E. Mechanical properties and failure behavior of cord/rubber composites[J]. Applied Composite Materials, 2004, 11(6): 353-375. [20] 尹平保, 余伟, 杨朝晖, 等. 橡胶-砂-聚氨酯复合材料冻融循环后强度特性及本构模型[J]. 复合材料学报, 2022, 39(7): 3415- 3427. [21] LIU C, ZHAO W Q, LI J. Gain scheduling output feedback control for vehicle path tracking considering input saturation[J]. Energies, 2020, 13(17): 4570-4570. [22] 卢荡, 卢磊, 吴海东, 等. 磨损对轮胎侧偏刚度和回正刚度影响的研究[J]. 机械工程学报, 2020, 56(12): 174-183. [23] SUN L, LU B, SUO Y. Analysis and prediction of tire cornering properties for different inflation pressures based on deflection control[J]. Tire Science and Technology, 2020, 49(2): 69-92. |