[1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. [2] WANG Z Q, XU L D, SUN X Y, et al. Fatigue behavior of glass-fiber-reinforced epoxy composites embedded with shape memory alloy wires[J]. Composite Structures, 2017, 178(10): 311-319. [3] YADAV I N, THAPA K B. Fatigue damage model of woven glass-epoxy fabric composite materials[J]. Journal of Materials Research and Technology, 2019, 9(1): 301-306. [4] SHINDO Y, TAKANO S, HORIGUCHI K, et al. Cryogenic fatigue behavior of plain weave glass/epoxy composite laminates under tension-tension cycling[J]. Cryogenics, 2006, 46(11): 794-798. [5] MOVAHEDI-RAD A V, KELLER T, VASSILOPOULOS A P. Fatigue damage in angle-ply GFRP laminates under tension-tension fatigue[J]. International Journal of Fatigue, 2017, 109: 60-69. [6] MOVAHEDI-RAD A V, KELLER T, VASSILOPOULOS A P. Interrupted tension-tension fatigue behavior of angle-ply GFRP composite laminates[J]. International Journal of Fatigue, 2018, 113(8): 377-388. [7] SINGH K K, ANSARI M T A, AZAM M S. Fatigue life and damage evolution in woven GFRP angle ply laminates[J]. International Journal of Fatigue, 2021, 142: 1059-1064. [8] ROUNDI W, MAHI A E, GHARAD A E, et al. Experimental and numerical investigation of the effects of stacking sequence and stress ratio on fatigue damage of glass/epoxy composites[J]. Composites Part B, 2017, 109: 64-71. [9] MALPOT A, TOUCHARD F, BERGAMO S. Fatigue behaviour of a thermoplastic composite reinforced with woven glass fibres for automotive application[J]. Procedia Engineering, 2015, 133(2): 136-147. [10] LIU J W, SUN Q, WANG X, et al. Experimental and modelling research on fatigue life of GFRP composite materials[J]. IOP Conference Series: Materials Science and Engineering, 2019, 504(1): 012-026. [11] 陈基伟, 姚卫星, 宗俊达, 等. 复合材料剩余刚度概率模型研究[J]. 南京航空航天大学学报, 2019, 51(4): 534-539. [12] 程小全, 杜晓渊. 纤维增强复合材料疲劳寿命预测及损伤分析模型研究进展[J]. 北京航空航天大学学报, 2021, 47(7): 1311-1322. [13] QUARESIMIN M, RICOTTA M. Fatigue behaviour and damage evolution of single lap bonded joints in composite material[J]. Composites Science and Technology, 2006, 66(2): 176-187. [14] MENEGHETTI G, QUARESIMIN M, RICOTTA M. Influence of the interface ply orientation on the fatigue behaviour of bonded joints in composite materials[J]. International Journal of Fatigue, 2010, 32(1): 82-93. [15] JEN Y M. Fatigue life evaluation of adhesively bonded scarf joints[J]. International Journal of Fatigue, 2012, 36(1): 30-39. [16] TENCHEV R T, FALZON B G. An experimental and numerical study of the static and fatigue performance of a composite adhesive repair[J]. Key Engineering Materials, 2008, 383: 25-34. [17] 郭霞, 迟海, 贺俊智, 等. 纤维增强复合材料胶接结构疲劳特性试验研究[J]. 实验力学, 2019, 34(6): 1077-1084. [18] 曹双辉, 高弄玥, 刘斌. 飞机复合材料阶梯式胶接结构的疲劳损伤与寿命[J]. 复合材料科学与工程, 2020(2): 81-84. [19] YOO J S, TRUONG V H, PARK M Y, et al. Parametric study on static and fatigue strength recovery of scarf-patch-repaired composite laminates[J]. Composite Structures, 2016, 140(4): 417-432. [20] 苏雨茹, 关志东, 王鑫, 等. 挖补修理复合材料层合板静力压缩与疲劳性能试验研究[J]. 复合材料科学与工程, 2021(5): 98-103. [21] American Society of Testing Materials. Standard test method for tensile properties of polymer matrix composite materials: ASTM D 3039/D 3039M—07[S]. West Conshohocken: ASTM International, 2007. [22] 刘斌. 复合材料胶接修补参数优化及修后性能研究[D]. 西安: 西北工业大学, 2016. [23] 高镇同. 疲劳应用统计学[M]. 北京: 国防工业出版社, 1986: 336-344. [24] 谢金标, 姚卫星. 疲劳S-N曲线拟合的双加权最小二乘法[J]. 宇航学报, 2010, 31(6): 1661-1665. [25] SCHAPERY R A. A theory of crack initiation and growth in viscoelastic media[J]. International Journal of Fracture, 1975, 11(1): 141-159. [26] FANG Q Z, WANG T J, LI H M. Overload-induced retardation of fatigue crack growth in polycarbonate[J]. International Journal of Fatigue, 2008, 30(8): 1419-1429. [27] IMAI Y, TAKASE T, NAKANO K. Study of fatigue crack growth retardation due to overloads in polymethylmethacrylate[J]. Journal of Materials Science, 1989, 24(9): 3289-3294. |