[1] 叶国安, 郑卫芳, 何辉, 等. 我国核燃料后处理技术现状和发展[J]. 原子能科学技术, 2020, 54(S1): 75-83. [2] 张琦. 关于加快发展核电站乏燃料后处理的建议[J]. 中国能源, 2019, 41(1): 44-47. [3] 李辉波, 张丽华, 叶国安. 我国后处理分析技术的发展现状与展望[J]. 原子能科学技术, 2020, 54(S1): 106-114. [4] ZHANG P, LI J, WANG W X, et al. Design, shielding mechanism and tensile property of a novel(B4C+6061Al)/C-f/6061Al laminar neutron-shielding composite[J]. Vacuum, 2020, 177(1): 109-383. [5] 雷攀. 无压浸渗工艺及热处理制度对B4C/Al复合材料组织、性能的影响[D]. 长沙: 中南大学, 2011. [6] 彭可武, 吴文远, 徐璟玉, 等. B4C/Al复合材料力学性能及其断裂机理的研究[J]. 熱加工工藝, 2007, 36(4): 1-3. [7] 鲜亚疆, 庞晓轩, 王伟, 等. 用于反应堆乏燃料贮存和运输的 B4C/Al复合材料研究进展[J]. 材料导报, 2015, 29(3): 45-48. [8] KENNEDY A R. The microstructure and mechanical properties of Al-Si-B4C metal matrix composites[J]. Journal of Materials Science, 2002, 37(2): 317-323. [9] MASHHADI M, TAHERI-NASSAJ E, SGLAVO V M, et al. Effect of Al addition on pressureless sintering of B4C[J]. Ceramics International, 2009, 35(2): 831-837. [10] LEE K B, SIM H S, CHO S Y, et al. Reaction products of Al-Mg/B4C composite fabricated by pressureless infiltration technique[J]. Materials Science & Engineering A, 2001, 302(2): 227-234. [11] 王文明, 潘复生, 曾苏民. 搅拌铸造制备SiCp/Al复合材料的研究现状[J]. 轻合金加工技术, 2004(4): 1-5, 35. [12] SINGH A K, SONI S, RANA R S. A critical review on synthesis of aluminum metallic composites through stir casting: Challenges and opportunities[J]. Advanced Engineering Materials, 2020, 22(10): 29. [13] 石细桥, 柏兴旺, 俞雪奇, 等. B4C/Al复合材料的组织,力学性能和制备研究进展[J]. 机电工程技术, 2021, 50(3): 76-78. [14] 黄伯云, 易健宏. 现代粉末冶金材料和技术发展现状(一)[J]. 上海金属, 2007(3): 1-7. [15] 张修超, 蔡晓兰, 周蕾, 等. 高能球磨工艺对B4C/Al复合粉体结构演变及分布均匀性的影响[J]. 材料导报, 2018, 32(15): 2653-2658. [16] 朱伟, 蔡晓兰, 王子阳, 等. B4C增强Al基复合材料的研究进展[J]. 材料导报, 2016, 30(S1): 478-482, 498. [17] DE JONGH P E, EGGENHUISEN T M. Melt Infiltration: An emerging technique for the preparation of novel functional nanostructured materials[J]. Advanced Materials, 2013, 25(46): 6672-6690. [18] BEDOLLA E, LEMUS-RUIZ J, CONTRERAS A. Synthesis and characterization of Mg-AZ91/AlN composites[J]. Materials & Design, 2012, 38: 91-98. [19] SCHLENTHER E, ÖZCOBAN H, JELITTO H, et al. Fracture toughness and corrosion behaviour of infiltrated Al2O3| P-Steel composites[J]. Materials Science and Engineering: A, 2014, 590: 132-139. [20] MALEKI K, ALIZADEH A, HAJIZAMANI M. Compressive strength and wear properties of SiC/Al6061 composites reinforced with high contents of SiC fabricated by pressure-assisted infiltration[J]. Ceramics International, 2021, 47(2): 2406-2413. [21] MANU K M S, RAAG L A, RAJAN T P D, et al. Liquid metal infiltration processing of metallic composites: A critical review[J]. Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science, 2016, 47(5): 2799-2819. [22] GHOMASHCHI M. Fabrication of near net-shaped Al-based intermetallics matrix composites[J]. Journal of materials Processing technology, 2001, 112(2-3): 227-235. [23] 徐中国. 高强韧(B4C+Gd)/Al中子屏蔽复合材料设计与性能[D]. 哈尔滨: 哈尔滨工业大学, 2018. [24] 张国峰, 晏朝晖, 庞晓轩, 等. B4C/Al复合材料研究进展[J]. 科技与创新, 2018(21): 30-33. [25] LIU B, HUANG W M, WANG H W, et al. Compressive behavior of high particle content B4C/Al composite at elevated temperature[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2013, 23(10): 2826-2832. [26] EL-SABBAGH A, SOLIMAN M, TAHA M, et al. Hot rolling behaviour of stir-cast Al 6061 and Al 6082 alloys-SiC fine particulates reinforced composites[J]. Journal of Materials Processing Technology, 2012, 212(2): 497-508. [27] CHEN H S, WANG W X, NIE H H, et al. Microstructure evolution and mechanical properties of B4C/6061Al neutron absorber composite sheets fabricated by powder metallurgy[J]. Journal of Alloys & Compounds, 2018, 730(5): 342-351. [28] 杨涛, 刘润爱, 王文先, 等. 热轧高含量B4C颗粒增强Al基复合材料的成形性能[J]. 复合材料学报, 2021, 38(7): 2234-2243. [29] KARAKOÇ H, KARABULUT Ş, ÇITAK R. Study on mechanical and ballistic performances of boron carbide reinforced Al 6061 aluminum alloy produced by powder metallurgy[J]. Composites Part B: Engineering, 2018, 148(9): 68-80. [30] 刘生璞. B4CP/6061Al复合材料轧制变形行为研究[D]. 北京: 北京有色金属研究总院, 2019. [31] ZHANG L, WANG Z, LI Q, et al. Microtopography and mechanical properties of vacuum hot pressing Al/B4C composites[J]. Ceramics International, 2017, 44(3): 3048-3055. [32] 薛威. 热变形对B4C/2024Al复合材料显微组织与力学性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2018. [33] 周丽, 张鹏飞, 王全兆, 等. B4C/6061Al复合材料热压缩断裂行为的多尺度研究[J]. 金属学报, 2019, 55(7): 911-918. [34] LI Y L, WANG W X, ZHOU J, et al. Hot deformation behaviors and processing maps of B4C/Al6061 neutron absorber composites[J]. Materials Characterization, 2017, 124: 107-116. [35] ZHENG R, MA F, ZHANG Y, et al. Microstructure and mechanical properties of fine structured B4C/2024 Al Composites with High B4C Content[J]. Advanced Engineering Materials, 2017, 19(7): 1-6. [36] CERRI E A, SPIGARELLI S B, EVANGELISTA E, et al. Hot deformation and processing maps of a particulate-reinforced 6061+20% Al2O3 composite[J]. Materials Science and Engineering: A, 2002, 324(1-2): 157-161. [37] CAVALIERE P, CERRI E, LEO P. Hot deformation and processing maps of a particulate reinforced 2618/Al2O3/20p metal matrix composite[J]. Composites Science and Technology, 2004, 64(9): 1287-1291. [38] SHENGPU L, DEFU L, SHENGLI G. Critical conditions of dynamic recrystallization for B4Cp/6061Al composite[J]. Rare Metal Materials & Engineering, 2017, 46(7): 1815-1820. [39] 周志嵩. B4C/2024Al复合材料界面结构及高温高应变速率变形行为[D]. 哈尔滨: 哈尔滨工业大学, 2015. [40] 靳涛, 王伟, 庞晓轩, 等. 热轧工艺对20% B4C/Al复合材料显微组织及缺陷的影响简[J]. 材料导报, 2017, 31(S1): 102-104. [41] 成小乐, 袁建才, 尹君, 等. B4CP/6063Al板材等应变速率挤压模具优化[J]. 塑性工程学报, 2020, 141(2): 43-50. [42] KOUZELI M, MARCHI C W S, MORTENSEN A. Effect of reaction on the tensile behavior of infiltrated boron carbide/aluminum composites[J]. Materials Science and Engineering: A, 2002, 337(1): 264-273. [43] XUE W, JIANG L, KANG P, et al. Design and fabrication of nano amorphous interface layer in B4C/Al Composites to improve hot deformability and corrosion resistance[J]. ACS Applied Nano Materials, 2020, 3(6): 5752-5761. [44] LUO Z P, SONG Y G, ZHANG S Q, et al. Interfacial microstructure in a B4C/Al composite fabricated by pressureless infiltration[J]. Metallurgical and Materials Transaction A, 2011, 43(1): 281-293. [45] GUO H, ZHANG Z, ZHANG Y, et al. Improving the mechanical properties of B4C/Al composites by solid-state interfacial reaction[J]. Journal of Alloys and Compounds, 2020, 829(1): 154521. [46] 郭文波, 胡启耀, 肖鹏. 界面反应产物对B4C/Al复合材料颗粒润湿性及界面强度的影响机制[J]. 复合材料学报, 2022(39): 1-11. [47] 屈伟, 范同祥. 金属/陶瓷润湿性的实验表征和理论预测研究进展[J]. 材料导报, 2019, 33(21): 3606-3612. [48] JUNG J, KANG S. Advances in manufacturing boron carbide-aluminum composites[J]. Journal of the American Ceramic Society, 2004, 87(1): 47-54. [49] 王希军, 马南钢, 丁华东, 等. 铝在B4C陶瓷上的润湿性[J]. 机械工程材料, 2008, 32(5): 15-19. [50] 曹雷刚, 王晓荷, 崔岩, 等. 基体铝合金成分对无压浸渗B4C/Al复合材料微观组织和力学性能的影响[J]. 中国材料进展, 2020, 39(2): 156-162. [51] YAO Y T, CHEN L Q. B4C/Al composites processed by metal-assisted pressureless infiltration technique and its characterization[J]. Materials & Manufacturing Processes, 2016, 31(10): 1286-1291. [52] 周飞. 无压浸渗工艺制备B4C/Al复合材料及组织性能研究[D]. 长沙: 中南大学, 2013. [53] 丁华东, 钱耀川, 傅苏黎, 等. 改善Al对B4 C润湿性的研究[J]. 装甲兵工程学院学报, 2006, 20(2): 88-90, 94. [54] 任涛. 无压浸渗制备B4C/Al复合材料微观组织及力学性能[D]. 哈尔滨: 哈尔滨工业大学, 2013. [55] YANG L, SHEN P, GUO R, et al. The role of TiO2 incorporation in the preparation of B4C/Al laminated composites with high strength and toughness[J]. Ceramics International, 2018, 44(13): 15219-15227. [56] LÜ P. A comparison between B4C-ZrB2-Al compositeand B4C-Al composite on microstructure and mechanical properties[J]. Advanced Materials Research, 2011, 279: 71-76. [57] HUANG X, YIN C, RU H, et al. Hypervelocity impact damage behavior of B4C/Al composite for MMOD shielding application[J]. Materials & Design, 2019, 186:108323. [58] XIAO G. Solid reaction between Al and BC[J]. Canadian Metallurgical Quarterly, 2014, 54(2): 248-249 [59] VIALA J C, BOUIX J, GONZALEZ G, et al. Chemical reactivity of aluminium with boron carbide[J]. Journal of Materials Science, 1997, 32(17): 4559-4573. [60] LEE K B, SIM H S, CHO S Y, et al. Reaction products of Al-Mg/B4C composite fabricated by pressureless infiltration technique[J]. Materials Science and Engineering: A, 2001, 302(2): 227-234. [61] 彭可武, 吴文远, 徐璟玉, 等. B4C和Al在高温条件下的化学反应及相组成的研究[J]. 稀有金属与硬质合金, 2008, 172(1): 16-19, 33. [62] ARSLAN G, KARA F, TURAN S. Quantitative X-ray diffraction analysis of reactive infiltrated boron carbide-aluminium composites[J]. Journal of The European Ceramic Society, 2003, 23(8): 1243-1255. [63] WANG H M, TANG F, LI G R, et al. Microstructure and properties of B4Cp/Al composite prepared by microwave sintering with low temperature[J]. Materials Research Express, 2020, 7(9): 1-15. [64] CHEN M, LIU Z, ZHENG Q, et al. Rapid preparation of B4Cp/Al composites with homogeneous interface via ultrasound assisted casting method[J]. Journal of Alloys and Compounds, 2020, 858: 157659. [65] CHEN M, LIU Z. Ultrasound assisted casting method for fabricating B4Cp/Al composites with the addition of K2ZrF6[J]. Materials Letters, 2020, 280: 128545. [66] LEE B S, KANG S. Low-temperature processing of B4C-Al composites via infiltration technique[J]. Materials Chemistry & Physics, 2001, 67(1): 249-255. [67] AGNE M T, ANASORI B, BARSOUM M W. Reactions between Ti2AlC, B4C, and Al and phase equilibria at 1 000 ℃ in the Al-Ti-B-C quaternary system[J]. Journal of Phase Equilibria and Diffusion, 2015, 36(2): 169-182. [68] SONG Q, ZHANG Z H, HU Z Y, et al. Mechanical properties and pre-oxidation behavior of spark plasma sintered B4C ceramics using (Ti3SiC2+CeO2/La2O3) as sintering aid[J]. Ceramics International, 2020, 46(14): 22189-22196. [69] ELLERT T, FRAGE N. On the effects of particle size and preform porosity on the mechanical properties of reaction-bonded boron carbide infiltrated with Al-Si alloy at 950 degrees[J]. Ceramics International, 2020, 46(11): 18994-18999. [70] 王晓荷. 无压浸渗B4C/Al复合材料力学性能研究[D]. 北京: 北方工业大学, 2019. [71] TUNCER N, TASDELEN B, ARSLAN G. Effect of passivation and precipitation hardening on processing and mechanical properties of B4C-Al composites[J]. Ceramics International, 2011, 37(7): 2861-2867. |