复合材料科学与工程 ›› 2023, Vol. 0 ›› Issue (6): 5-11.DOI: 10.19936/j.cnki.2096-8000.20230628.001

• 基础研究 •    下一篇

碳化玄武岩纤维混凝土孔隙结构表征及劈裂拉伸力学性能

赵哲1, 李彬2   

  1. 1.河南大学,开封 475000;
    2.河南大学 龙子湖校区建设与管理委员会,郑州 450046
  • 收稿日期:2022-05-05 出版日期:2023-06-28 发布日期:2023-08-22
  • 作者简介:赵哲(1988—),男,硕士,工程师,主要从事建筑设计、工程项目管理方面的研究,Zhaozhe20220401@163.com。
  • 基金资助:
    国家自然科学基金(51608174);河南省科技计划项目(192102310014)

Characterization of pore structure and splitting tensile mechanical properties of carbonated basalt fiber concrete

ZHAO Zhe1, LI Bin2   

  1. 1. Henan University, Kaifeng 475000, China;
    2. Longzihu Campus Construction and Management Committee of Henan University, Zhengzhou 450046, China
  • Received:2022-05-05 Online:2023-06-28 Published:2023-08-22

摘要: 混凝土建筑物长期暴露于空气中会被空气中的CO2气体碳化,碳化作用下混凝土的力学性能会发生变化,从而影响混凝土结构使用的安全性。本文基于试验采用快速碳化对碳化作用下素混凝土与玄武岩纤维混凝土内部孔隙结构及抗拉强度进行研究,对两种混凝土进行了0 d、3 d、7 d、14 d、28 d快速碳化,测量不同碳化龄期下试件碳化深度,采用核磁共振装置测量了两种混凝土在不同碳化龄期下的孔隙结构变化,利用电液压力机对试件开展了静载劈裂拉伸试验。结果表明:素混凝土及纤维混凝土碳化深度均随碳化龄期的增长而增加,玄武岩纤维混凝土碳化深度与速率始终小于素混凝土,玄武岩纤维的掺入降低了混凝土的碳化速率;随着碳化龄期的增加,试件T2图谱峰值降低,图谱向左偏移,碳化作用减少了混凝土内部孔隙数目,减小孔隙直径,孔隙率随之降低,碳化龄期与孔隙率间呈良好的指数相关,素混凝土孔隙率始终高于玄武岩纤维混凝土;试件内部微孔、中孔占比在85.89%以上,碳化龄期越长,试件微孔、中孔占比越大,碳化作用生成碳酸盐结晶体充斥于裂隙中,降低试件内部大孔、裂隙的占比;随着碳化龄期的增加,两种混凝土抗拉强度均先增大后减小,前期碳化作用会降低试件孔隙率,增强试件整体,其抗拉强度随之增大,后期碳化作用所产生的膨胀力会对试件造成损伤,试件抗拉强度降低,玄武岩纤维混凝土强度降幅明显低于素混凝土,纤维的掺入增强了混凝土材料的抗碳化能力。

关键词: 玄武岩纤维混凝土, 碳化速率, 孔隙结构, T2图谱, 抗拉强度, 复合材料

Abstract: Concrete buildings exposed to the air for a long time will be carbonized by CO2 gas in the air. The mechanical properties of concrete materials will change under carbonation, which will affect the safety of concrete structures. Based on the test, this paper studies the internal pore structure and tensile strength of plain concrete and basalt fiber concrete under carbonation by using rapid carbonation. The two kinds of concrete were carbonized rapidly at 0 d, 3 d, 7 d, 14 d and 28 d. The carbonation depth of the specimens at different carbonation ages was measured. The pore structure changes of two kinds of concrete at different carbonation ages were measured by nuclear magnetic resonance (NMR) device, and the static load splitting tensile test was carried out on the specimens by electro-hydraulic press. The results show that the carbonation depth of plain concrete and fiber concrete increases with the increase of carbonation age. The carbonation depth and rate of basalt fiber concrete are always lower than that of plain concrete. The addition of basalt fiber reduces the carbonation rate of concrete. With the increase of carbonation age, the peak value of T2 spectrum of the specimen decreases, and the spectrum shifts to the left. Carbonation reduces the number of pores in the concrete material, reduces the pore diameter, and then reduces the porosity. There is a good exponential correlation between carbonation age and porosity, and the porosity of plain concrete is always higher than that of basalt fiber concrete. The proportion of micropores and mesopores in the specimen is more than 85.89%. The longer the carbonation age, the larger the proportion of micropores and mesopores in the specimen. Carbonation generates carbonate crystals that fill the cracks, reducing the proportion of macropores and cracks in the specimen. With the increase of carbonation age, the tensile strength of the two kinds of concrete increases first and then decreases. The early carbonation will reduce the porosity of the specimen, enhance the whole specimen, and its tensile strength will increase. The expansion force generated by the late carbonation will damage the specimen, and the tensile strength of the specimen will decrease. The strength decline of basalt fiber concrete is significantly lower than that of plain concrete. The addition of fiber enhances the carbonation resistance of concrete materials.

Key words: basalt fiber concrete, carbonization rate, pore structure, T2 spectrum, tensile strength, composites

中图分类号: