[1] TAN L J, ZHU W, ZHOU K. Recent progress on polymer materials for additive manufacturing[J]. Advanced Functional Materials, 2020, 30(43): 2003062.
[2] 何星蔚, 张金杰, 王恒旭, 等. 双酚A环氧树脂/双氰胺/2-甲基咪唑体系研究[J]. 林业工程学报, 2018, 3(3): 63-67.
[3] CAPRICHO J C, FOX B, HAMEED N. Multifunctionality in epoxy resins[J]. Polymer Reviews, 2020, 60(1): 1-41.
[4] 徐杰, 王恒旭, 张金杰, 等. 环氧粉状胶黏剂的力学性能及固化动力学特性研究[J]. 林业工程学报, 2019, 4(2): 66-72.
[5] LIU B W, ZHAO H B, WANG Y Z. Advanced flame-retardant me-thods for polymeric materials[J]. Advanced Materials, 2022, 34(46):2107905.
[6] LIU X F, XIAO Y F, LUO X, et al. Flame-retardant multifunctional epoxy resin with high performances[J]. Chemical Engineering Journal, 2022, 427: 132031.
[7] 韩俊华, 吕建, 徐晓伟, 等. 环氧粉末涂料的固化动力学和固化工艺的研究[J]. 热固性树脂, 2010, 25(3): 1-5.
[8] HUO S, SONG P, YU B, et al. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives[J]. Progress in Polymer Science, 2021, 114: 101366.
[9] LIU B W, CHEN L, GUO D M, et al. Fire-safe polyesters enabled by end-group capturing chemistry[J]. Angewandte Chemie International Edition, 2019, 58 (27): 9188-9193.
[10] LIU B W, ZHAO H B, CHEN L, et al. Eco-friendly synergistic cross-linking flame-retardant strategy with smoke and melt-dripping suppression for condensation polymers[J]. Composites Part B: Engineering, 2021, 211: 108664.
[11] ZHAO H B, WANG X L, GUAN Y, et al. Block self-cross-linkable poly (ethylene terephthalate) copolyester via solid-state polymerization: Crystallization, cross-linking, and flame retardance[J]. Polymer, 2015, 70: 68-76.
[12] MAO Z, LI J, PAN F, et al. High-temperature auto-cross-linking cyclotriphosphaznene: Synthesis and application in flame retardance and antidripping poly (ethylene terephthalate)[J]. Industrial & Engineering Chemistry Research, 2015, 54(15): 3788-3799.
[13] GUO H, CHEN Z, ZHANG J, et al. Self-promoted curing phthalonitrile with high glass transition temperature for advanced composites[J]. Journal of Polymer Research, 2012, 19(7): 9918.
[14] YAN Y W, CHEN L, JIAN R K, et al. Intumescence: An effect way to flame retardance and smoke suppression for polystryene[J]. Polymer Degradation and Stability, 2012, 97(8): 1423-1431.
[15] BREULET H, STEENHUIZEN T. Fire testing of cables: Comparison of SBI with FIPEC/Europacable tests[J]. Polymer Degradation and Stability, 2005, 88(1): 150-158.
[16] GUO H, CHEN Z, LIU X. Effect of processing conditions on physical properties of 3-aminophenoxyphthalonitrile/epoxy laminates[J]. Journal of Applied Polymer Science, 2014, 131(1): 39746.
[17] ZHU Z M, SHANG K, WANG L X, et al. Synthesis of an effective bio-based flame-retardant curing agent and its application in epoxy resin: Curing behavior, thermal stability and flame retardancy[J]. Polymer Degradation and Stability, 2019, 167: 179-188.
[18] HUO S, ZHOU Z, JIANG J, et al. Flame-retardant, transparent, mechanically-strong and tough epoxy resin enabled by high-efficiency multifunctional boron-based polyphosphonamide[J]. Chemical Engineering Journal, 2022, 427: 131578.
[19] OZAWA T. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 38(11): 1881-1886.
[20] ZHANG J, MI X, CHEN S, et al. A bio-based hyperbranched flame retardant for epoxy resins[J]. Chemical Engineering Journal, 2020, 381: 122719.
[21] WANG P J, LIAO D J, HU X P, et al. Facile fabrication of biobased PNC-containing nano-layered hybrid: Preparation, growth mechanism and its efficient fire retardancy in epoxy[J]. Polymer Degradation and Stability, 2019, 159: 153-162.
[22] LI W X, ZHANG H J, HU X P, et al. Highly efficient replacement of traditional intumescent flame retardants in polypropylene by manganese ions doped melamine phytate nanosheets[J]. Journal of Hazardous Materials, 2020, 398: 123001. |