[1] 谢鸣九. 复合材料连接[M]. 上海: 上海交通大学出版社, 2011. [2] 唐义号. 飞机典型复合材料结构损伤力学性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2005. [3] 陈昆, 刘龙权, 汪海. 干涉和螺栓预紧力对复合材料连接强度的影响[C]//第十七届全国复合材料学术会议. 北京: 2012: 32-37. [4] MATTHEWS F L, DAVIES G A O, HITCHINGS D, et al. Finite element modeling of composite materials and structures[M]. Cambridge: Woodhead Publishing, 2000: 175-193. [5] RAMKUMAR R L, TOSSAVAINEN E W. Strength and lifetime of bolted laminates[Z]. In: Potter J M, Ed. Fatigue in Mechanically Fastened Composite and Metallic Joints. ASTM STP 927. Philadelphia: 1986: 251-273. [6] COLLINGS T A. The strength of bolted joints in multi-directional cfrp laminates[J]. Composites, 1977, 8(1): 43-55. [7] STARIKOV R, SCHÖN J. Local fatigue behaviour of CFRP bolted joints[J]. Composites Science & Technology, 2002, 62(2): 243-253. [8] CREW J, JOHN H. Bolt-bearing fatigue of a graphite/epoxy laminate[J]. Joining of Composite Materials, 1981, 7(49): 15-16. [9] BHATTACHARYA A, SEN A, DAS S. An investigation on the anti-loosening characteristics of threaded fasteners under vibratory conditions[J]. Mechanism & Machine Theory, 2010, 45(8): 1215-1225. [10] DHÔTE J X, COMER A J, STANLEY W F, et al. Investigation into compressive properties of liquid shim for aerospace bolted joints[J]. Composite Structures, 2014, 109: 224-230. [11] SHINDO Y, TAKEDA T, NARITA F. Mechanical response of nonwoven polyester fabric/epoxy composites at cryogenic temperatures[J]. Cryogenics, 2012, 52(10): 564-568. [12] CASTELLANOS A G, CINAR K, GUVEN I, et al. Low-velocity impact response of woven carbon composites in arctic conditions[J]. Journal of Dynamic Behavior of Materials, 2018(4): 308-316. [13] HE Y, YANG S, LIU H, et al. Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties[J]. Journal of Colloid and Interface Science, 2018, 517: 40-51. [14] LI F, HUA Y, QU C B, et al. Greatly enhanced cryogenic mechanical properties of short carbon fiber/polyethersulfone composites by graphene oxide coating[J]. Composites Part A: Applied Science and Manufacturing, 2016, 89: 47-55. [15] MIURA M, SHINDO Y, TAKEDA T, et al. Interlaminar fracture characterization of woven glass/epoxy composites under mixed-mode Ⅱ/Ⅲ loading conditions at cryogenic temperatures[J]. Engineering Fracture Mechanics, 2012, 96: 615-625. [16] TAKEDA T, FAN W, FENG Q P, et al. Cryogenic mechanical properties of woven glass/epoxy composites modified with multi-walled carbon nanotube and n-butyl glycidyl ether under tensile static and cyclic loadings[J]. Cryogenics, 2013, 58(58): 33-37. [17] ATLI-VELTIN B. Cryogenic performance of single polymer polypropylene composites[J]. Cryogenics, 2018, 90: 86-95. [18] SHINDO Y, TAKEDA T, NARITA F, et al. Delamination growth mechanisms in woven glass fiber reinforced polymer composites under mode Ⅱ fatigue loading at cryogenic temperatures[J]. Composites Science and Technology, 2009, 69(11-12): 1904-1911. [19] WHITLEY K S, GATES T S. Thermal/mechanical response of a polymer matrix composite at cryogenic temperatures[J]. AIAA Journal, 2003, 42(10): 1991-2001. [20] 罗健, 石建军, 贾彬, 等. 低温暴露对碳纤维/环氧树脂复合材料拉伸力学性能的影响[J]. 复合材料学报, 2020, 37(12): 3091-3101. |