[1] 胡德良. 塑料革命:如何将聚合物的应用推向新领域 . 世界科学, 2016(11): 20-23.
[2] ISMAIL H, ABDULLAH A H, BAKAR A A. Influence of acetylation on the tensile properties, water absorption, and thermal stability of (High-density polyethylene)/(soya powder)/(kenaf core) composites. Journal of Vinyl and Additive Technology, 2011, 17(2): 132-137.
[3] SHIN B Y, HAN D H. Compatibilization of PLA/starch composite with electron beam irradiation in the presence of a reactive compatibilizer. Advanced Composite Materials, 2013, 22(6): 411-423.
[4] SCHWACH E, AVEROUS L. Starch-based biodegradable blends: Morphology and interface properties. Polymer International, 2004, 53(12): 2115-2124.
[5] 王志刚, 胡广, 任杰. 聚乳酸基生物降解共混物的制备及应用. 塑料, 2017, 46(2): 125-129.
[6] ZHANG Y, YUAN X, LIU Q, et al. The effect of polymeric chain extenders on physical properties of thermoplastic starch and polylactic acid blends. Journal of Polymers and the Environment, 2012, 20(2): 315-325.
[7] LIM L T, AURAS R, RUBINO M. Processing technologies for poly (lactic acid). Progress in Polymer Science, 2008, 33(8): 820-852.
[8] YANG Y, XIONG Z, ZHANG L, et al. Isosorbide dioctoate as a “green” plasticizer for poly(lactic acid). Materials & Design, 2016, 91: 262-268.
[9] ENDRES H J, SIEBERT-RATHS A. Engineering biopolymers: markets, manufacturing, properties and applications. München: Carl Hanser Verlag GmbH&, Co. KG, 2011.
[10] XIONG Z, DAI X, NA H, et al. A toughened PLA/nanosilica composite obtained in the presence of epoxidized soybean oil. Journal of Applied Polymer Science, 2015, 132(1). http://onlinelibrary.wiley.com/doi/10.1002/app.41220.DOI:10.1002/app.41220.
[11] BALAKRISHNAN N K, SIEBERT S, RICHTER C, et al. Effect of colorants and process parameters on the properties of dope-dyed polylactic acid multifilament yarns. Ploymers, 2022, 14(22):
[12] 5201.
[13] SAWYER D J. PLA technology and applications. Nonwovens World, 2001, 10(2): 49-53.
[14] MOGHADDASKIA E, GHASEMPOUR Z, ALIZADEH M. Fabrication of an eco-friendly antioxidant biocomposite: Zedo gum/sodium caseinate film by incorporating microalgae (Spirulina platensis). Journal of Applied Polymer Science, 2018, 135(13): 46024.
[15] AYDIN A A, ILBERG V. Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol: Starch blends. Carbohydrate Polymers, 2016, 136: 441-448.
[16] 郭斌, 查东东, 薛灿, 等. 聚乳酸纤维对热塑性淀粉塑料性能的影响. 功能高分子学报, 2018, 31(3): 261-266.
[17] JIANG L, LIU B, ZHANG J. Novel high-strength thermoplastic starch reinforced by in situ poly (lactic acid) fibrillation. Macromolecular Materials and Engineering, 2009, 294(5): 301-305.
[18] PAN Y X, LIU C J, LAN C. Temperature-programmed studies of coke resistant ni catalyst for carbon dioxide reforming of methane. Catalysis Letters, 2008, 123(1-2): 96-101.
[19] WANG Z, ZHANG Y, NEYTS E C, et al. Catalyst preparation with plasmas: How does it work?. ACS Catalysis, 2018, 8(3): 2093-2110.
[20] LIU C, YE J, JIANG J, et al. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. Chem CatChem, 2011, 3(3): 529-541.
[21] ZHAO Y, PAN Y X, XIE Y, et al. Carbon dioxide reforming of methane over glow discharge plasma-reduced Ir/Al2O3 catalyst. Catalysis Communications, 2008, 9(7): 1558-1562.
[22] PAN Y X, LIU C J, SHI P. Preparation and characterization of coke resistant Ni/SiO2 catalyst for carbon dioxide reforming of methane. Journal of Power Sources, 2008, 176(1): 46-53.
[23] PAN Y X, CONG H P, MEN Y L, et al. Peptide self-assembled biofilm with unique electron transfer flexibility for highly efficient visible-light-driven photocatalysis. ACS Nano, 2015, 9(11): 11258-11265. |