[1] LAN X, LIU L W, ZHANG F H, et al. World’s first spaceflight on-orbit demonstration of a flexible solar array system based on shape memory polymer composites. Science China(Technological Sciences), 2020, 63(8): 1436-1451.
[2] ZHENG F, CHEN M, LI W, et al. Conceptual design of a new huge deployable antenna structure for space application//Aerospace Conference. Montana, USA: 2008: 1-7.
[3] 冉江南, 韩佩彤, 曹子振, 等. 薄壁管状空间伸展臂技术综述. 机械, 2019, 46(10): 44-51.
[4] BLOCK J, STRAUBEL M, WIEDEMANN M, et al. Ultralight deployable booms for solar sails and other large gossamer structures in space. Acta Astronautica, 2011, 68: 984-992.
[5] 刘恋. 人形杆纯弯曲力学特性分析与实验. 安徽: 安徽大学, 2020.
[6] OKHOTKIN K G, VLASOV A Y, ZAKHAROV Y V, et al. Analytical modeling of the flexible rim of space antenna reflectors. Journal of Applied Mechanics and Technical Physics, 2017, 58(5): 924-932.
[7] LEIPOLD M, RUNGE H, SICKINGE C, et al. Large SAR membrane antennas with lightweight deployable booms//28th ESA Antenna Workshop on Space Antenna Systems and Technologies. 2005.
[8] FERNANDEZ J M, LAPPAS V J, ANDREW J, et al. Completely stripped solar sail concept using bi-stable reeled composite booms. Acta Astronautica, 2011, 69: 78-85.
[9] CAMPBELL D, BARRETT R, LAKE M S, et al. Development of a novel, passively deployed roll-out solar array//IEEE Aerospace Conference. 2006.
[10] LEIPOLD M, EIDEN M, GARNER C E, et al. Solar sail technology development and demonstration. Acta Astronautica, 2003, 52: 317-326.
[11] RIMROTT F P J. Storable tubular extendible member: A unique machine element. Machine Design, 1965, 37(28): 156-165.
[12] HAZELTON C S, GALL K R, ABRAHAMSON E R, et al. Development of a prototype elastic memory composite STEM for large space structures//44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2003.
[13] BOWEN D H, DAVIDSON R, LEE R J, et al. The development of a continuous manufacturing method for a deployable satellite mast in CFRP//European Space Research and Technology Centre, 1986.
[14] HERBECK L, EIDEN M, LEIPOLD M, et al. Development and test of deployable ultra-lightweight CFRP-booms for a solar sail//European Conference on Spacecraft Structures, Materials and Mechanical Testing. 2000: 107.
[15] LECLERC C, WILSON L, BESSA M A, et al. Characterization of ultra-thin composite triangular rollable and collapsible booms//4th AIAA Spacecraft Structures Conference. 2017.
[16] LECLERC C, PELLEGRINO S, et al. Nonlinear elastic buckling of ultra-thin coilable booms. International Journal of Solids and Structures, 2020, 203: 46-56.
[17] MURPHEY T W, BANIK J. Triangular rollable and collapsible boom: US20070876081. 2011.
[18] WHORTON M, HEATON A, PINSON R, et al. Nanosail-D: The first flight demonstration of solar sails for nanosatellites//22nd Annual AIAA/USU Conference on Small Satellites. 2008.
[19] JOHNSON L, WHORTON M, HEATON A, et al. NanoSail-D: A solar sail demonstration mission. Acta Astronautica, 2011, 68(5-6): 571-575.
[20] BIDDY C, SVITEK T. Light sail-1 solar sail design and qualification//41st Aerospace Mechanisms Symposium. 2012: 451.
[21] BETTS B, SPENCER D A, NYE B, et al. Lightsail 2: Controlled solar sailing using a cube sat//The 4th International Symposium on Solar Sailing. 2017.
[22] ROYBAL F, BANIK J, MURPHEY T, et al. Development of an elastically deployable boom for tensioned planar structures//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2007: 1838.
[23] STOHLMAN O R, LOPER E. Thermal deformation of very slender TRAC booms//3rd AIAA Spacecraft Structures Conference. 2016: 1469.
[24] FERNANDEZ J M. Advanced deployable shell-based composite booms for small satellite structural applications including solar sails//International Symposium on Solar Sailing. 2017.
[25] 杨慧, 刘恋, 刘荣强, 等. 复合材料人形杆压扁过程数值模拟分析. 宇航学报, 2019, 40(5): 570-576.
[26] ROYER F, PELLEGRINO S, et al. Ultralight ladder-type coilable space structures//2018 AIAA Spacecraft Structures Conference.
[27] 2018.
[28] MURPHEY T W, TURSE D, ADAMS L, et al. TRAC boom structural mechanics//4th AIAA Spacecraft Structures Conference.
[29] 2017.
[30] SEBAEY T A, MAHDI E. Using thin-plies to improve the damage resistance and tolerance of aeronautical CFRP composites. Composites Part A: Applied Science and Manufacturing, 2016, 86: 31-38.
[31] 张正, 李世超, 张金纳, 等. 预浸料的超薄化对碳纤维/环氧树脂复合材料拉伸破坏行为的影响. 复合材料学报, 2020, 37(4): 800-807.
[32] SIHN S, KIM R Y, KAWABE K, et al. Experimental studies of thin-ply laminated composites. Composites Science and Technology, 2007, 67: 996-1008.
[33] EL-DESSOUKY H M, LAWRENCE C A. Ultra-lightweight carbon fibre/thermoplastic composite material using spread tow technology. Composites: Part B, 2013, 50: 91-97.
[34] Standard test method for flexural properties of polymer matrix composite materials: D7264/D7264M-15. ASTM, 2015.
[35] 邱超, 马心旗, 王亚震, 等. 薄层碳纤维增强树脂基复合材料研究与应用进展. 航空制造技术, 2021, 64(14): 22-31.
[36] DANO M L, HYER M W. Thermally-induced deformation behavior of unsymmetric laminates. International Journal of Solids and Structures, 1998, 35(17): 2101-2120. |