[1] FANG C, HU P, DONG S, et al. An efficient hydrothermal transformation approach for construction of controllable carbon coating on carbon fiber from renewable carbohydrate[J]. Applied Surface Science, 2019, 491: 478-487. [2] SHARMA M, GAO S, MADER E, et al. Carbon fiber surfaces and composite interphases[J]. Composites Science and Technology, 2014, 102: 35-50. [3] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. [4] 董慧民, 益小苏, 安学峰, 等. 纤维增强热固性聚合物基复合材料层间增韧研究进展[J]. 复合材料学报, 2014, 31(2): 273-285. [5] 伍文艳, 刘强, 吴良军. 不同工艺碳纤维增强复合材料构件的力学性能[J]. 玻璃钢/复合材料, 2017(10): 23-28. [6] SUN H F, MEMON S A, GU Y, et al. Degradation of carbon fiber reinforced polymer from cathodic protection processon exposure to NaOH and simulated pore watersolutions[J]. Materials and Structures, 2016, 49 (12): 5273-5283. [7] XU H B, ZHANG X Q, LIU D, et al. Cyclomatrix-type polyphosphazene coating: Improving interfacial property of carbon fiber/epoxycomposites and preserving fiber tensile strength [J]. Composites Part B: Engineering, 2016, 93: 244-251. [8] LV J W, LIU Y S, QIN Y T, et al. Constructing “Rigid-and-Soft” interlocking stereoscopic interphase structure of aramid fiber composites with high interfacial shear strength and toughness[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106386. [9] 苏峰. 碳纤维-环氧树脂界面性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. [10] 张美会, 曹维宇, 肖建文. 碳纤维表面化学接枝研究进展[J]. 化工新型材料, 2021, 49(6): 38-41. [11] 邹恒, 董文洋, 岳春波, 等. 化学接枝对碳纤维结构及其复合材料的影响[J]. 高分子材料科学与工程, 2015, 31(8): 68-73. [12] 邹田春, 刘志浩, 李晔, 等. 等离子体表面处理对碳纤维增强树脂基复合材料(CFRP)胶接性能及表面特性的影响[J]. 中国表面工程, 2022, 35(1): 125-134. [13] 向坤, 熊德永, 陆轴, 等. 等离子体改性高性能纤维材料反应机理研究进展[J]. 工程塑料应用, 2020, 48(7): 148-153. [14] DE L F, SERNICOLA G, SHAFFER M S P, et al. “Brick-and-Mortar” nanostructured interphase for glass-fiber-reinforced polymer composites[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7352-7361. [15] 张亚萍, 石磊, 郭小凤, 等. 界面结合方式对氧化石墨烯-碳纤维/环氧树脂复合材料性能的影响[J]. 上海大学学报(自然科学版), 2020, 26(6): 927-936. [16] ZHOU G D, YAO H C, ZHOU Y, et al. Self-assembled complexes of graphene oxide and oxidized vapor-grown carbon fibers for simultaneously enhancing the strength and toughness of epoxy and multi-scale carbon fiber/epoxy composites[J]. Carbon, 2018, 137: 6-18. [17] 陈超, 秦文贞, 黄军同, 等. 碳纳米材料表面改性碳纤维及在环氧树脂中的应用[J]. 工程塑料应用, 2019, 47(2): 116-121.[18] QIN W Z, VAUTARD F, DRZAL L T, et al. Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplateletsat the fiber-matrix interphase[J]. Composites Part B: Engineering, 2015, 69: 335-341. [19] 柴进, 孔海娟, 张新异, 等. 含碳纳米管上浆剂上浆改性碳纤维及其界面研究[J]. 复合材料科学与工程, 2020(8): 64-69. [20] ZHAO F, HUANG Y D, LIU L, et al. Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites[J]. Carbon, 2011, 49: 2624-2632. [21] 刘秀影, 宋英, 李存梅, 等. 氧化石墨烯接枝碳纤维新型增强体的制备与表征[J]. 无机化学学报, 2011, 27(11): 2128-2132. [22] XIONG S, ZHAO Y, WANG Y K, et al. Enhanced interfacial properties of carbon fiber/epoxy composites by coating carbon nanotubes onto carbon fiber surface by one-step dipping method[J]. Applied Surface science, 2021, 546: 149135. [23] DILSIZ N, WIGHTMAN J P. Surface analysis of unsized and sized carbon fibers[J]. Carbon, 1999, 37: 1105-1114. [24] 王闻宇, 刘亚敏, 金欣, 等. 聚吡咯修饰碳纤维/环氧树脂复合材料的界面剪切强度[J]. 材料研究学报, 2018, 32(3): 209-215. [25] 杨宏军, 蒋振奇, 柏涛, 等. 石墨烯/聚氨酯复合材料的合成及表征[J]. 高分子材料科学与工程, 2016, 32(5): 28-32. [26] 吴熔琳, 邵铮铮, 常胜利, 等. 不同参数多壁碳纳米管的拉曼光谱研究[J]. 光谱学与光谱分析, 2014, 34(4): 982-985. [27] 赵展. 碳纳米管分散性的研究[D]. 上海: 东华大学, 2014. [28] 冯培峰. 碳纤维表面刚柔结构可控构筑及其树脂基复合材料界面性能研究[D]. 山东: 青岛大学, 2021. [29] YANG B, XUAN F Z, LEI H S, et al. Simultaneously enhancing the IFSS and monitoring the interfacial stress state of GF/epoxy composites via building in the MWCNT interface sensor[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 161-167. [30] PU Y C, MA Z Y, BAI Y P, et al. Improvement on strength and toughness for CFRPs by construction of novel “soft-rigid” interface layer[J]. Composites Part B: Engineering, 2022, 236: 109846. |