[1] 朱佳伟, 文传博. 基于改进SSD的风机叶片缺陷检测[J]. 复合材料科学与工程, 2022, 338(3): 38-44. [2] 陈维刚, 张会林. 基于RF-LightGBM算法在风机叶片开裂故障预测中的应用[J]. 电子测量技术, 2020, 43(1): 162-168. [3] LI H, ZHOU W, XU J. Structural health monitoring of wind turbine blades[M]//Wind Turbine Control and Monitoring. 2014: 231-265. [4] TCHAKOUA P, WAMKEUE R, OUHROUCHE M, et al. Wind turbine condition monitoring: State-of-the-art review, new trends, and future challenges[J]. Energies, 2014, 7(4): 2595-2630. [5] 杨家欢, 宗哲英, 王祯, 等. 风机叶片检测的研究现状及进展[J]. 复合材料科学与工程, 2020(6): 109-113. [6] 张保钦, 雷保珍, 赵林惠, 等. 风机叶片故障预测的振动方法研究[J]. 电子测量与仪器学报, 2014, 28(3): 285-291. [7] HUTCHINSON T C, CHEN Z Q. Improved image analysis for evaluating concrete damage[J]. Journal of Computing in Civil Engineering, 2006, 20(3): 210-216. [8] NICK W, SHELTON J, ASAMENE K, et al. A study of supervised machine learning techniques for structural health monitoring[C]//Midwest Artifical Intelligence and Cognitive Science Conference. 2015: 36. [9] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2012, 60: 84-90. [10] MA N, ZHANG X, ZHENG H T, et al. Shufflenet V2: Practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 116-131. [11] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. CoRR, 2014, abs/1409. 1556. [12] ZHANG C, WEN C, LIU J. Mask-MRNet: A deep neural network for wind turbine blade fault detection[J]. Journal of Renewable and Sustainable Energy, 2020, 12(5): 053302. [13] ZHU J, WEN C, LIU J. Defect identification of wind turbine blade based on multi-feature fusion residual network and transfer learning[J]. Energy Science & Engineering, 2022, 10(1): 219-229. [14] CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 1251-1258. [15] LI X, WANG W, HU X, et al. Selective kernel networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 510-519. [16] HAHNLOSER R H R, SARPESHKAR R, MAHOWALD M A, et al. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit[J]. Nature, 2000, 405(6789): 947-951. [17] MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of the 30th International Conference on Machine Learning. 2013: 3. |