[1] 冯鹏. 复合材料在土木工程中的发展与应用[J]. 玻璃钢/复合材料, 2014(9): 99-104. [2] HOLLAWAY L C. A review of the present and future utilisation of FRP composites in thecivil infrastructure with reference to their important in-service properties[J]. Construction and Building Materials, 2010, 24(12): 2419-2445. [3] VIJAY P V, SOTI P R, GANGARAO H V S, et al. Design and evaluation of an integrated FRP composite wicket gate[J]. Composite Structures, 2016, 145: 149-161. [4] 梅端, 王钧, 李君明, 等. 玻璃纤维增强树脂基复合材料拉-拉疲劳行为研究[J]. 玻璃钢/复合材料, 2013(2): 39-42. [5] 祖群. 高性能玻璃纤维发展历程与方向[J]. 玻璃钢/复合材料, 2014(9): 19-23. [6] 张强先, 赵华伟, 方园, 等. 悬索桥主缆钢丝腐蚀与防护的应用进展[J]. 南京工业大学学报: 自然科学版, 2020, 42(3): 278-283. [7] 高铭, 赵鹏飞, 方园, 等. 湿热环境下纤维增强树脂-泡桐木夹芯结构Ⅰ型剥离理论分[J]. 南京工业大学学报: 自然科学版, 2022, 44(1): 100-106. [8] WANG L, LIU W, FANG Y, et al. Axial crush behavior and energy absorption capability of foam-filled GFRP tubes manufactured through vacuum assisted resin infusion process[J]. Thin-Walled Structures, 2016, 98: 263-273. [9] GRAMMATIKOS S A, BALL R J, EVERNDEN M, et al. Impedance spectroscopy as a tool for moisture uptake monitoring in construction composites during service[J]. Composites Part A: Applied Science and Manufacturing, 2018, 105: 108-117. [10] WU F Q, YAO W X. A fatigue damage model of composite materials[J]. International Journal of Fatigue, 2010, 32(1): 134-138. [11] 吕晓敏, 孙志杰, 李敏, 等. 多壁碳纳米管/玻璃纤维/环氧树脂界面粘结特性研究[J].玻璃钢/复合材料, 2012(1): 24-28. [12] 赵珩, 李杰, 郭安儒. 纳米粒子改性环氧树脂的研究进展[J]. 化学与粘合, 2020, 42(4): 288-293. [13] BOGER L, SUMFLETH J, HEDEMANN H, et al. Improvement of fatigue life by incorporation of nanoparticles in glass fiber reinforced epoxy[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(10): 1419-1424. [14] 高颖, 吕亚清, 潘丽. 碳纳米管对碳纤维/环氧树脂复合材料力学性能的影响[J]. 功能材料, 2012, 43(S1): 70-72, 77. [15] KNOLL J B, RIECKEN B T, KOSMANN N, et al. The effect of carbon nanoparticles on the fatigue performance of carbon fiber reinforced epoxy[J]. Composites Part A: Applied Science and Manufacturing, 2014, 67: 233-240. [16] Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/3039M—17[S]. West Conshohocken, PA: ASTM International, 2017. [17] Standard test method for uniaxial fatigue properties of plastics: ASTM D7791-17[S]. West Conshohocken, PA: ASTM International, 2017. [18] Standard test method for tension-tension fatigue of polymer matrix composite materials: ASTM D3479/D3479M-19[S]. West Conshohocken, PA: ASTM International, 2019. [19] 曾少华, 申明霞, 李佳骐, 等. MWCNT对玻纤复合材料界面黏合性及其影响机制[J]. 南京工业大学学报: 自然科学版, 2017, 39(5): 27-32. [20] TURAKA S, REDDY K V K, SAHU R K, et al. Mechanical properties of MWCNTs and graphene nanoparticles modified glass fibre-reinforced polymer nanocomposite[J]. Bulletin of Materials Science, 2021, 44(3): 1-14. [21] 陈传尧. 疲劳与断裂[M]. 武汉: 华中科技大学出版社, 2002. [22] 史慧媛. 格构增强轻木夹芯复合材料结构疲劳机理研究与寿命预测[D]. 南京: 东南大学, 2018. |