[1] 邢丽英, 李亚锋, 陈祥宝. 先进复合材料在航空装备发展中的地位与作用[J]. 复合材料学报, 2022, 39(9): 4179-4186. [2] 贾园, 师瑞峰, 蒋勰, 等. 环氧树脂的开发及其在电子电器材料中的应用研究进展[J]. 功能材料, 2020, 51(4): 4040-4045, 4053. [3] MATHEWS L D, CAPRICHO J C, PEERZADA M, et al. Recent progress and multifunctional applications of fire-retardant epoxy resins[J]. Materials Today Communications, 2022, 33: 104702. [4] XIANG Q, XIAO F. Applications of epoxy materials in pavement engineering[J]. Construction and Building Materials, 2020, 235: 117529. [5] PETROVA A P, LUKINA N F, ISAEV A Y. Epoxy adhesives and their application[J]. Polymer Science, Series D, 2020, 13(3): 245-249. [6] MI X, LIANG N, XU H, et al. Toughness and its mechanisms in epoxy resins[J]. Progress in Materials Science, 2022, 130: 100977. [7] 宋品, 张晖, 张忠, 等. 橡胶相尺度对亚微米或纳米橡胶颗粒填充环氧复合材料性能的影响[J]. 复合材料学报, 2013, 30(6): 203-208. [8] 董玲, 李鹏, 杨小平, 等. 全硫化纳米羧基丁腈橡胶增韧环氧树脂性能的研究[J]. 玻璃钢/复合材料, 2013(1): 20-24. [9] 邓双辉, 李志强, 李山剑, 等. 一种新型增韧剂的合成及其对环氧树脂的改性[J]. 材料科学与工程学报, 2018, 36(6): 868-873, 882. [10] CHEN D, LI J, YUAN Y, et al. A new strategy to improve the toughness of epoxy thermosets by introducing the thermoplastic epoxy[J]. Polymer, 2022, 240: 124518. [11] MATHIS E, MICHON M-L, BILLAUD C, et al. Controlling the morphology in epoxy/thermoplastic systems[J]. ACS Applied Polymer Materials, 2022, 4(3): 2091-2104. [12] CHENG X, WU Q, MORGAN S E, et al. Morphologies and mechanical properties of polyethersulfone modified epoxy blends through multifunctional epoxy composition[J]. Journal of Applied Polymer Science, 2017, 134(18). [13] HODGKIN J, SIMON G, VARLEY R. Thermoplastic toughening of epoxy resins: A critical review[J]. Polymers for Advanced Technologies, 1998, 9: 3-10. [14] CHEN S, XU Z, ZHANG D. Synthesis and application of epoxy-ended hyperbranched polymers[J]. Chemical Engineering Journal, 2018, 343: 283-302. [15] LI S, LIN Q, ZHU H, et al. Investigations on mechanical characteristics of glass fiber reinforced epoxy composite modified with amino-terminated hyperbranched polymer[J]. Fibers and Polymers, 2016, 17(2): 282-288. [16] JIN F-L, PARK S-J. Thermal properties and toughness performance of hyperbranched-polyimide-modified epoxy resins[J]. Journal of Polymer Science Part B: Polymer Physics, 2006, 44(23): 3348-3356. [17] RATNA D, SIMON G P. Thermomechanical properties and morphology of blends of a hydroxy-functionalized hyperbranched polymer and epoxy resin[J]. Polymer, 2001, 42(21): 8833-8839. [18] FERNÁNDEZ-FRANCOS X, SALLA J M, CADENATO A, et al. A new strategy for controlling shrinkage of DGEBA resins cured by cationic copolymerization with hydroxyl-terminated hyperbranched polymers and ytterbium triflate as an initiator[J]. Journal of Applied Polymer Science, 2009, 111(6): 2822-2929. [19] SANTIAGO D, SERRA À. Enhancement of epoxy thermosets with hyperbranched and multiarm star polymers: A Review[J]. Polymers, 2022, 14(11): 2228. [20] JIN Q, MISASI J M, WIGGINS J S, et al. Simultaneous reinforcement and toughness improvement in an aromatic epoxy network with an aliphatic hyperbranched epoxy modifier[J]. Polymer, 2015, 73: 174-182. [21] CAI W, YUAN Z, WANG Z, et al. Enhancing the toughness of epoxy resin by using a novel hyperbranched benzoxazine[J]. Reactive and Functional Polymers, 2021, 164: 104920. [22] YU Q, LIANG Y, CHENG J, et al. Synthesis of a degradable high-performance epoxy-ended hyperbranched polyester[J]. ACS Omega, 2017, 2(4): 1350-1359. [23] LIU Z, YUAN L, LIANG G, et al. Tough epoxy/cyanate ester resins with improved thermal stability, lower dielectric constant and loss based on unique hyperbranched polysiloxane liquid crystalline[J]. Polymers for Advanced Technologies, 2015, 26(12): 1608-1618. [24] GUI D, GAO X, HAO J, et al. Preparation and characterization of liquid crystalline polyurethane-imide modified epoxy resin composites[J]. Polymer Engineering & Science, 2014, 54(7): 1704-1711. [25] LUO X, YU X, MA Y, et al. Preparation and cure kinetics of epoxy with nanodiamond modified with liquid crystalline epoxy[J]. Thermochimica Acta, 2018, 663: 1-8. [26] CHEN F, CONG Y, ZHANG B. Synthesis and characterization of liquid crystalline epoxy and co-polymerisation with a non-mesomorphic epoxy resin[J]. Liquid Crystals, 2016, 43(8): 1100-1109. [27] GAO Z, YU Y, XU Y, et al. Synthesis and characterization of a liquid crystalline epoxy containing azomethine mesogen for modification of epoxy resin[J]. Journal of Applied Polymer Science, 2007, 105(4): 1861-1868. [28] LIN Z, CONG Y, ZHANG B, et al. Synthesis and characterisation of a novel Y-shaped liquid crystalline epoxy and its effect on isotropic epoxy resin[J]. Liquid Crystals, 2019, 46(10): 1467-1477. [29] FAROOQ U, TEUWEN J, DRANSFELD C. Toughening of epoxy systems with interpenetrating polymer network (IPN): A review [J]. Polymers, 2020, 12(9): 1908. [30] KOSTRZEWA M, HAUSNEROVA B, BAKAR M, et al. Property evaluation and structure analysis of polyurethane/epoxy graft interpenetrating polymer networks[J]. Journal of Applied Polymer Science, 2011, 122(3): 1722-1730. [31] LEE S-E, JEONG E, LEE M Y, et al. Improvement of the mechanical and thermal properties of polyethersulfone-modified epoxy composites[J]. Journal of Industrial and Engineering Chemistry, 2016, 33: 73-79. [32] YING W B, YANG H S, MOON D S, et al. Epoxy resins toughened with in situ azide-alkyne polymerized polysulfones [J]. Journal of Applied Polymer Science, 2018, 135(5): 45790. [33] JAYAN J S, SARITHA A, JOSEPH K. Innovative materials of this era for toughening the epoxy matrix: A review[J]. Polymer Composites, 2018, 39(S4): E1959-E1986. [34] CHEN C, JUSTICE R S, SCHAEFER D W, et al. Highly dispersed nanosilica-epoxy resins with enhanced mechanical properties[J]. Polymer, 2008, 49(17): 3805-3815. [35] PARK Y T, QIAN Y, CHAN C, et al. Epoxy toughening with low graphene loading[J]. Advanced Functional Materials, 2015, 25(4): 575-585. [36] KOTHMANN M H, ZEILER R, ANDA A R D, et al. Fatigue crack propagation behaviour of epoxy resins modified with silica-nanoparticles[J]. Polymer, 2015, 60: 157-163. [37] 尹术帮, 赵凯, 杨杰. 核壳橡胶纳米粒子改性环氧树脂/酸酐体系固化动力学及其性能研究[J]. 化工新型材料, 2019, 47(2): 180-183. [38] CHEN J, KINLOCH A J, SPRENGER S, et al. The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles[J]. Polymer, 2013, 54(16): 4276-4289. [39] 李亚锋, 张杜鹃, 鹿海军. EPN纳米橡胶粒子增韧双氰胺环氧树脂及其复合材料性能研究[J]. 中国胶粘剂, 2022, 31(7): 7-12. [40] WANG J, XUE Z, LI Y, et al. Synergistically effects of copolymer and core-shell particles for toughening epoxy[J]. Polymer, 2018, 140: 39-46. [41] MA H, ARAVAND M A, FALZON B G. Synergistic enhancement of fracture toughness in multiphase epoxy matrices modified by thermoplastic and carbon nanotubes[J]. Composites Science and Technology, 2021, 201: 108523. [42] ZHAO X, LI Y, CHEN W, et al. Improved fracture toughness of epoxy resin reinforced with polyamide 6/graphene oxide nanocomposites prepared via in situ polymerization[J]. Composites Science and Technology, 2019, 171: 180-189. [43] MISHRA K, PANDEY G, SINGH R P. Enhancing the mechanical properties of an epoxy resin using polyhedral oligomeric silsesquioxane (POSS) as nano-reinforcement[J]. Polymer Testing, 2017, 62: 210-218. [44] 周震, 陈少军, 黄文俊, 等. 国内外碳纤维复合材料及结构供应与制造现状[J]. 高科技纤维与应用, 2018, 43(6): 22-32. [45] 包建文, 蒋诗才, 张代军. 航空碳纤维树脂基复合材料的发展现状和趋势[J]. 科技导报, 2018, 36(19): 52-63. |