[1] 郑言. 2021年我国复合材料的行业发展态势、存在问题与发展建议[J]. 应用化学, 2022, 39(2): 351-352. [2] 宋绪丁, 庞利沙. 碳纤维树脂基复合材料及成型工艺与应用研究进展[J]. 包装工程, 2021, 42(14): 81-91. [3] 蒋骁捷, 胡小平, 苏飞, 等. CFRP制孔加工缺陷及制孔技术的研究进展[J]. 机械设计与制造, 2021(8): 79-82. [4] 汪海晋. 树脂基复合材料钻削缺陷产生机理与控制策略研究[D]. 济南: 山东大学, 2016. [5] HOCHENG H, DHARAN C. Delamination during drilling in composite laminates[J]. Journal of Engineering for Industry, 1990, 112(3): 236-239. [6] 鲍永杰, 高航, 李凤全. 电镀金刚石钻头钻削碳纤维复合材料研究[J]. 金刚石与磨料磨具工程, 2009(3): 38-42. [7] HOCHENG H, TSAO C C. Effects of special drill bits on drilling-induced delamination of composite materials[J]. International Journal of Machine Tools & Manufacture, 2006, 46(12-13): 1403-1416. [8] 牟娟, 陈燕, 徐九华, 等. 钎焊套料钻钻削碳纤维增强复合材料层合板出口撕裂缺陷的成因分析[J]. 中国机械工程, 2013, 24(20): 2699-2704. [9] 刘洋, 李鹏南, 陈明, 等. 采用BP神经网络预测碳纤维增强树脂基复合材料的钻削力[J]. 机械科学与技术, 2017, 36(4): 586-591. [10] SOEPANGKAT B, NORCAHYO R, EFFENDI M K,et al. Multi-response optimization of carbon fiber reinforced polymer (CFRP) drilling using back propagation neural network-particle swarm optimization (BPNN-PSO)[J]. Engineering Science and Technology, 2019, 23(3): 700-713. [11] TSAO C C. Comparison between response surface methodology and radial basis function network for core-center drill in drilling composite materials[J]. The International Journal of Advanced Manufacturing Technology, 2008, 37(11-12): 1061-1068. [12] 林伟, 涂俊翔. 高速钻削碳纤维复合材料加工参数对入口分层的影响研究[J]. 现代制造工程, 2015(2): 12-17. [13] 刘诗敬, 郗欣甫, 侯曦, 等. 面向经编机产能的预测算法设计[J]. 东华大学学报(自然科学版), 2021, 47(4): 35-42. [14] YU M, LI G, JIANG D, et al. Application of PSO-RBF neural network in gesture recognition of continuous surface EMG signals[J]. Journal of Intelligent and Fuzzy Systems, 2019, 38(20): 1-12. [15] LI G S, YANG J W, WANG W J, et al. Augmented RBF metamodel for global sensitivity analysis enhanced byrecursive evolution LHD and efficient K-fold cross-validation[J]. Journal of Mechanical Science and Technology, 2022, 36(8): 4127-4142. |