[1] DIZON J, ESPERA A H, CHEN Q, et al. Mechanical characterization of 3D-printed polymers[J]. Additive Manufacturing, 2018, 20: 44-67. [2] MELENKA G W, CHEUNG B, SCHOFIELD J S, et al. Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures[J]. Composite Structures, 2016, 153(8): 866-875. [3] TYMRAK B, KREIGER M, PEARCE J, et al. Mechanical properties of components fabricated with open-source 3D printers under realistic environmental conditions[J]. Materials & Design, 2014, 58: 242-246. [4] SUN Q, RIZVI G M, BELLEHUMEUR C T, et al. Effect of processing conditions on the bonding quality of FDM polymer filaments[J]. Rapid Prototyping Journal, 2008, 14(2): 72-80. [5] TRAN P, NGO T D, GHAZLAN A, et al. Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings[J]. Composites Part B: Engineering, 2017, 108: 210-223. [6] MELNIKOVA R, EHRMANN A, FINSTERBUSCH K. 3D printing of textile-based structures by fused deposition modelling (FDM) with different polymer materials[J]. IOP Conference Series: Materials Science and Engineering, 2014, 62: 1-8. [7] CAULFILED B, MCHUGH P E, LOHFELD S. Dependence of mechanical properties of polyamide components on build parameters in the SLS process[J]. Journal of Materials Processing Technology, 2007, 182(1-3): 477-488. [8] KROLL E, ARTZI D. Enhancing aerospace engineering students’ learning with 3D printing wind-tunnel models[J]. Rapid Prototyping Journal, 2011, 17(5): 393-402. [9] WONG K V, HERNANDEZ A. A review of additive manufacturing[J]. International Scholarly Research Notices, 2012, 30-38. [10] SHORT D B. Use of 3D printing by museums: Educational exhibits, artifact education, and artifact restoration[J]. 3D Printing and Additive Manufacturing, 2015, 2(4): 209-215. [11] MURPHY S, ATALA A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32(8): 773-785. [12] DICKSON A N, BARRY J N,MCDONNELL K A, et al. Fabrication of continuous carbon, glass and kevlar fibre reinforced polymer composites using additive manufacturing[J]. Additive Manufacturing, 2017, 16: 146-152. [13] JUSTO J, TAVARA L, GARCIA L,et al. Characterization of 3D printed long fibre reinforced composites[J]. Composite Structures, 2018, 185: 537-548. [14] NAKAGAWA Y K, MORI K, MAENO T. 3D printing of carbon fibre-reinforced plastic parts[J]. International Journal Additive Manufacturing, 2017, 91(5-8): 2811-2817. [15] WANG X, JIANG M, ZHOU Z, et al. 3D printing of polymer matrix composites: A review and prospective[J]. Composites Part B: Engineering, 2017, 110B: 442-458. [16] BAUMANN F, SCHOLZ J, FLEISCHER J. Investigation of a new approach for additively manufactured continuous fiber-reinforced polymers[J]. Procedia CIRP, 2017, 66: 323-328. [17] DICKSON A N, BARRY J N, MCDONNELL K A, et al. Fabrication of continuous carbon, glass and kevlar fibre reinforced polymer composites using additive manufacturing[J]. Additive Manufacturing, 2017, 16: 146-152. [18] BRENKEN B, BAROCIO E, FAVALORO A, et al. Fused filament fabrication of fiber-reinforced polymers: A review[J]. Additive Manufacturing, 2018, 21: 1-16. [19] LI N, LI Y, LIU S. Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing-science direct[J]. Journal of Materials Processing Technology, 2016, 238: 218-225. [20] LI N, LINK G, JELONNEK J. Rapid 3D microwave printing of continuous carbon fiber reinforced plastics[J]. CIRP Annals, 2020, 69(1): 221-224. [21] TEKINALP H L, KUNC V, VELEZ-GARCIA G M, et al. Highly oriented carbon fiber-polymer composites via additive manufacturing[J]. Composites Science and Technology, 2014, 105: 144-150. [22] AKHOUNDI B, BEHRAVESH A. Effect of filling pattern on the tensile and flexural mechanical properties of FDM 3D printed products[J]. Experimental Mechanics, 2019, 59(6): 883-897. [23] FIDAN I, IMERI A, GUPTA A, et al. The trends and challenges of fiber reinforced additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2019,102(5-8): 1801-1818. [24] HEIDARI M, RAFIEE M, ZAHEDI A M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites[J]. Composites, 2019, 175: 1-8. [25] DUTRA T A, FERREIRA R T, RESENDE H B, et al. Mechanical characterization and asymptotic homogenization of 3D-printed continuous carbon fiber-reinforced thermoplastic[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(3): 1-15. [26] YE W, LIN G, WU W, et al. Separated 3D printing of continuous carbon fiber reinforced thermoplastic polyimide[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 457-464. [27] TODOROKI A, OASADA T, MIZUTANI Y, et al. Tensile property evaluations of 3D printed continuous carbon fiber reinforced thermoplastic composites[J]. Advanced Composite Materials, 2020, 29(2): 147-162. [28] JUAN N L, HORACIO A G, PRDRO O C, et al. Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing-Science Direct[J]. Additive Manufacturing, 2019, 26: 227-241. [29] MING Y K, DUAN Y G. A Novel route to fabricate high-performance 3D printed continuous fiber-reinforced thermosetting polymer composites[J]. Materials, 2019, 12(9): 1369-1382. [30] DE BACKER W, SINKEZ P, CHHABRA I, et al. In-process monitoring of continuous fiber additive manufacturing through force/torque sensing on the nozzle[C]//AIAA Sci Tech Forum and Exposition. 2020: 461-468. [31] SUGIYAMA K, MATSUZAKI R, MALAKHOV AV, et al. 3D printing of optimized composites with variable fiber volume fraction and stiffness using continuous fiber[J].Composites Science and Technology, 2020, 186: 1-7. [32] LI N, LIN G, WANG T, et al. Path-designed 3D printing for topological optimized continuous carbon fibre reinforced composite structures[J]. Composites Part B: Engineering, 2020, 182: 1-9. [33] DING D H, PAN Z S, CUIURI D, et al. A tool-path generation strategy for wire and arc additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(1): 173-183. [34] 谭瑞诗, 刘明尧, 张帆, 等. 碳纤维长纤3D打印的连续性路径规划算法[J]. 机械设计与制造, 2019(6): 1-4. [35] 任东改. 基于Bayazit算法的3D打印路径规划研究[J]. 数字印刷, 2019(6): 50-57. [36] 杨德成. 智能3D打印路径规划系统设计与实现[D]. 大连: 大连理工大学, 2019. [37] REN F, SUN Y, GUO D M, et al. Combined reparameterization-based spiral toolpath generation for five-axis sculptured surface machining[J]. The International Journal of Advanced Manufacturing Technology, 2009, 40(78): 760-768. [38] TIZIANO S, MONICA O, ELISABETH E, et al. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds[J]. Materials Science & Engineering, 2014, 38: 55-62. [39] XU J, SUN Y, WANG S. Tool path generation by offsetting curves on polyhedral surfaces based on mesh flattening[J]. The International Journal of Advanced Manufacturing Technology, 2013, 64(9-12): 1201-1212. [40] 熊文骏. 向形心收缩的变距偏置填充算法[D]. 武汉: 华中科技大学, 2007. [41] 罗恒, 李涤尘, 解瑞东, 等. 快速成型中基于直骨架原理的轮廓偏置算法[J]. 计算机辅助设计与图形学学报, 2011, 23(11): 1908-1914. [42] 尚雯. 碳纤维长纤3D打印切片处理研究及在服务平台上的实现[D]. 武汉: 武汉理工大学, 2017. [43] JIN G Q, LI W D, GAO L. An adaptive process planning approach of rapid prototyping and manufacturing[J]. Robotics & Computer Integrated Manufacturing, 2013, 29(1): 23-38. [44] 周祖德, 陈飞, 张帆, 等. 连续碳纤维3D打印的高效螺旋偏置填充算法[J]. 武汉理工大学, 2017, 39(12): 81-87. [45] JIHEE H. An efficient approach to 3D path planning[J]. Information Sciences, 2019, 478(4): 318-330. [46] 易雪涛. 连续碳纤维复合材料选择性增强处理的3D打印切片方法研究[D]. 武汉: 武汉理工大学, 2019. [47] ZHAO H, GU F, HUANG Q X, et al. Connected fermat spirals for layered fabrication[J]. ACM Transactions on Graphics, 2016, 35(4): 1-10. [48] FERNANDEZ M, CALLE W, FERRANDIZ S, et al. Effect of infill parameters on tensile mechanical behavior in desktop 3D printing[J]. 3D Printing and Additive Manufacturing, 2016, 3(3): 183-192. [49] SHARMA M, RAO I M, BIJWE J. Influence of fiber orientation on abrasive wear of unidirectionally reinforced carbon fiber-polyetherimide composites[J]. Tribology International, 2010, 43(5-6): 959-964. [50] GRCIA C R, CORREA J, ESPALIN D, et al. 3D printing of anisotropic metamaterials[J]. Progress in Electromagnetics Research Letters, 2012, 34: 75-82. [51] GU H B, MA C, GU J W, et al. An overview of multifunctional epoxy nanocomposites[J]. Journal of Materials Chemistry C, 2016, 4(25): 589. [52] GU J, YANG X, LV Z, et al. Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity[J]. International Journal of Heat & Mass Transfer, 2016, 92: 15-22. [53] DOU J B, ZHANG Q Y, MA M L, et al. Fast fabrication of epoxy-functionalized magnetic polymer core-shell microspheres using glycidyl methacrylate as monomer via photo-initiated miniemulsion polymerization[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(19): 3078-3082. [54] KENTARO S, RYOSUKE M, ANDERI V M, et al. 3D printing of optimized composites with variable fiber volume fraction and stiffness using continuous fiber[J]. Composites Science and Technology, 2020, 186: 1-7. [55] WANG T, LI N. Load-dependent path planning method for 3D printing of continuous fiber reinforced plastics[J]. Composites Part A: Applied Science and Manufacturing, 2020, 140: 1-26. [56] BROOKS H, SAMUEL M. Design and evaluation of additively manufactured parts with three dimensional continuous fibre reinforcement[J]. Materials & design, 2016, 90: 276-283. [57] JIANG D, HOGLUND R, SMITH D E. Continuous fiber angle topology optimization for polymer composite deposition additive manufacturing applications[J]. Fibers, 2019, 7(2): 14. [58] TAMIJANI A Y, GHARIBI K, KOBAYASHI M H, et al. Load paths visualization in plane elasticity using load function method[J]. International Journal of Solids and Structures, 2017, 99-109. [59] GHARIBI K, TANIJANI A Y. Load-path-based topology optimization of two-dimensional continuum structures[J]. AIAA Journal, 2021, 59(9): 1-10. [60] CHU S, XIAO M, GAO L, et al. Robust topology optimization for fiber-reinforced composite structures under loading uncertainty[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 384: 1-18. [61] LI H, GAO L, LI H, et al. Full-scale topology optimization for fiber-reinforced structures with continuous fiber paths[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 377: 1-20. [62] YAN X L. Concurrent topology design of structures and materials with optimal material orientation[J]. Composite Structures, 2019, 220: 473-480. |