[1] QI C, JIANG F, YANG S. Advanced honeycomb designs for improving mechanical properties: A review[J]. Composites Part B: Engineering, 2021, 227: 109393. [2] 张俊琪, 刘龙权, 汪海. 薄面板复合材料蜂窝夹层结构冲击试验[J]. 复合材料学报, 2014, 31(4): 1063-1071. [3] AUDIBERT C, ANDRÉANI A, LAINÉ É, et al. Discrete modelling of low-velocity impact on Nomex? honeycomb sandwich structures with CFRP skins[J]. Composite Structures, 2019, 207: 108-118. [4] SUN M, WOWK D, MECHEFSKE C, et al. An analytical study of the plasticity of sandwich honeycomb panels subjected to low-velocity impact[J]. Composites Part B: Engineering, 2019, 168: 121-128. [5] DAI X, YUAN T, ZU Z, et al. Experimental investigation on the response and residual compressive property of honeycomb sandwich structures under single and repeated low velocity impacts[J]. Materials Today Communications, 2020, 25: 101309. [6] QIN Q, CHEN S, LI K, et al. Structural impact damage of metal honeycomb sandwich plates[J]. Composite Structures, 2020, 252: 112719. [7] 谢鑫, 段玥晨, 齐佳旗. 冲击角度对铝蜂窝夹芯板低速冲击性能的影响[J]. 复合材料科学与工程, 2020(4): 19-27. [8] ZHANG X, XU F, ZANG Y, et al. Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjec-ted to low-velocity impact[J]. Composite Structures, 2020, 236: 111882. [9] GAO X, ZHANG M, HUANG Y, et al. Experimental and numerical investigation of thermoplastic honeycomb sandwich structures under bending loading[J]. Thin-Walled Structures, 2020, 155: 106961. [10] MANES A, GILIOLI A, SBARUFATTI C, et al. Experimental and numerical investigations of low velocity impact on sandwich panels[J]. Composite Structures, 2013, 99: 8-18. [11] RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs-a finite element study[J]. International Journal of Impact Engineering, 2003, 28(2): 161-182. [12] 于鹏山, 刘志芳, 李世强. 新型仿生蜂窝结构的设计与耐撞性能分析[J]. 高压物理学报, 2022, 36(1): 149-160. [13] SABAH S H A, KUEH A B H, Al-FASIH M Y. Comparative low-velocity impact behavior of bio-inspired and conventional sandwich composite beams[J]. Composites Science and Technology, 2017, 149: 64-74. [14] SABAH S H A, KUEH A B H, Al-FASIH M Y. Bio-inspired vs. conventional sandwich beams: A low-velocity repeated impact behavior exploration[J]. Construction and Building Materials, 2018, 169: 193-204. [15] HA N S, LU G, XIANG X. Energy absorption of a bio-inspired honeycomb sandwich panel[J]. Journal of Materials Science, 2019, 54(8): 6286-6300. [16] SABAH S H A, KUEH A B H, BUNNORI N M. Failure mode maps of bio-inspired sandwich beams under repeated low-velocity impact[J]. Composites Science and Technology, 2019, 182: 107785. |