[1] ALIA R A, CANTWELL W J, LANGDON G S, et al. The energy-absorbing characteristics of composite tube-reinforced foam structures[J]. Composites Part B: Engineering, 2014, 61: 127-135. [2] MOU H L, XIE J, FENG Z Y. Research status and future development of crash worthiness of civil aircraft fuselage structures: An overview[J]. Progress in Aerospace Sciences, 2020, 119: 100644. [3] HAQ A U, REDDY N S K. A brief review on various high energy absorbing materials[J]. Materials Today: Proceedings, 2021, 38(5): 3198-3204. [4] SIROMANI D, HENDERSON G, MIKITA D, et al. An experimental study on the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial compression[J]. Composites Part A: Applied Science and Manufacturing, 2014, 64: 25-35. [5] GATTINENI V, NATHI V. Lean methods for energy absorption computation of thin-walled composite tubes[J]. Materials Today: Proceedings, 2020, 27(2): 897-903. [6] 王军照. 碳纤维复合材料在航空领域中的应用现状及改进[J]. 今日制造与升级, 2020(8): 48-49. [7] 董帆, 马其华, 周天俊. 纤维增强复合材料薄壁件轴向压缩吸能性研究进展[J]. 工程塑料应用, 2020, 48(6): 137-144. [8] LI Z, CHEN R, LU F. Comparative analysis of crashworthiness of empty and foam-filled thin-walled tubes[J]. Thin-Walled Structures, 2018, 124: 343-349. [9] ZHANG Y, YAN X, HUANG W, et al. Experimental investigations on mechanical behavior of the carbon fiber tube reinforced polyurethane foam[J]. Thin-Walled Structures, 2020, 155: 106899. [10] YANG H, LEI H, LU G. Crashworthiness of circular fiber reinforced plastic tubes filled with composite skeletons/aluminum foam under drop-weight impact loading[J]. Thin-Walled Structures, 2021, 160: 107380. [11] SEBAEY T A, RAJAK D K, MEHBOOB H. Internally stiffened foam-filled carbon fiber reinforced composite tubes under impact loading for energy absorption applications[J]. Composite Structures, 2021, 255: 112910. [12] WANG H, WANG W H, WANG P, et al. Foam-filled lightweight braided-textile reinforced and nested tubular structures for energy absorption applications[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106569. [13] LIU J, LIU H, YANG J L. Lateral crushing and energy absorption behavior of hexagonal tubes with non-uniform thickness distributions[J]. Composite Structures, 2022, 285: 115196. [14] 张前锦, 阳玉球, 鱼住忠司, 等. 缝纫增强对碳纤维编织复合材料管件能量吸收性能的影响[J]. 玻璃钢/复合材料, 2015(9): 29-34. [15] 朱宏伟, 张震东, 赵昌方, 等. 碳纤维复合材料蜂窝结构轴向压溃实验研究[J]. 塑料科技, 2021, 49(3): 34-37. [16] RYZIN′SKA G, DAVID M, PRUSTY G, et al. Effect of fibre architecture on the specific energy absorption in carbon epoxy composite tubes under progressive crushing[J]. Composite Structures, 2019, 227: 111292. [17] PAN Z X, OUYANG W H, WANG M L, et al. In-plane compression failure mechanism of two-dimensional triaxial braided composite (2DTBC) material subjected to different load directions[J]. Mechanics of Materials, 2021, 161: 104001. [18] SONG Z B, MING S Z, LI T, et al. Improving the energy absorption capacity of square CFRP tubes with cutout by introducing chamfer[J]. International Journal of Mechanical Sciences, 2021, 189: 105994. [19] 邓亚斌, 任毅如, 蒋宏勇. 复合材料吸能圆管在半圆凹槽触发机制下的斜向压溃失效行为[J]. 复合材料学报, 2022, 39(4): 1790-1797. [20] WANG S M, PENG Y, WANG TT, et al. The origami inspired optimization design to improve the crashworthiness of a multi-cell thin-walled structure for high speed train[J]. International Journal of Mechanical Sciences, 2019, 159: 345-358. [21] WANG L, ZHANG B Y, ZHANG J, et al. Deformation and energy absorption properties of cenosphere-aluminum syntactic foam-filled tubes under axial compression[J]. Thin-Walled Structures, 2021, 160: 107364. [22] 王凯, 马其华, 查一斌. 端部诱导孔对Al-CFRP混合薄壁管轴向压缩性能的影响[J]. 复合材料科学与工程, 2021(2): 65-71. |