[1] 李玉星, 张睿, 刘翠伟, 等. 掺氢天然气管道典型管线钢氢脆行为[J]. 油气储运, 2022, 41(6): 732-742. [2] SU Y, LV H, ZHOU W, et al. Review of the hydrogen permeability of the liner material of type Ⅳ on-board hydrogen storage tank[J]. World Electric Vehicle Journal, 2021, 12(3): 130. [3] EBERLE U, VON HELMOLT R. GM HydroGen4-A fuel cell electric vehicle based on the chevrolet equinox[M]. Weinheim: In Stolten D, Samsun R C and Garland N(Eds.). Fuel Cells: Data, Facts and Figures. Wiley-VCH Verlag GmbH & Co, 2016: 75-86. [4] 陈振国, 矫维成, 闫美玲, 等. 碳纤维增强树脂基复合材料低温贮箱抗渗漏性研究进展[J]. 玻璃钢/复合材料, 2018(11): 109-116. [5] 张冬娜, 丁楠, 张兆, 等. Ⅳ型瓶聚乙烯内胆材料氢渗透行为研究[J]. 新能源进展, 2022, 10(1): 15-19. [6] NURUDDIN M, CHOWDHURY R A, LOPEZ-PEREZ N, et al. Influence of free volume determined by positron annihilation lifetime spectroscopy (PALS) on gas permeability of cellulose nanocrystal films[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24380-24389. [7] GROGAN D. Damage and permeability in linerless composite cryogenic tanks[D]. Galway: National University of Ireland, 2015. [8] LIU G, YANG F, BAI Y, et al. Enhancement of bonding strength between polyethylene/graphene flakes composites and stainless steel and its application in type Ⅳ storage tanks[J]. Journal of Energy Storage, 2021, 42: 103142. [9] BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416): 414-418. [10] CUI Y, KUNDALWAL S I, KUMAR S. Gas barrier performance of graphene/polymer nanocomposites[J]. Carbon, 2016, 98: 313-333. [11] EBINA T, ISHII R, AIZAWA T, et al. Development of clay-based film and its application to gas barrier layers of composite tanks[J]. Journal of the Japan Petroleum Institute, 2017, 60(3): 121-126. [12] CHOUDALAKIS G, GOTSIS A D. Permeability of polymer/clay nanocomposites: A review[J]. European Polymer Journal, 2009, 45(4): 967-984. [13] NIELSEN L E. Models for the permeability of filled polymer systems[J]. Journal of Macromolecular Science: Part A-Chemistry, 1967, 1(5): 929-942. [14] LAPE N K, NUXOLL E E, CUSSLER E L. Polydisperse flakes in barrier films[J]. Journal of Membrane Science, 2004, 236(1): 29-37. [15] GUAN Y, MEYERS K P, MENDON S K, et al. Ecofriendly fabrication of modified graphene oxide latex nanocomposites with high oxygen barrier performance[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 33210-33220. [16] BERRY V. Impermeability of graphene and its applications[J]. Carbon, 2013, 62: 1-10. [17] SUN P Z, YANG Q, KUANG W J, et al. Limits on gas impermeability of graphene[J]. Nature, 2020, 579(7798): 229-232. [18] ZID S, ZINET M, ESPUCHE E. Modeling diffusion mass transport in multiphase polymer systems for gas barrier applications: A review[J]. Journal of Polymer Science Part B: Polymer Physics, 2018, 56(8): 621-639. [19] BHARADWAJ R K. Modeling the barrier properties of polymer-layered silicate nanocomposites[J]. Macromolecules, 2001, 34(26): 9189-9192. [20] MAHAJAN R, KOROS W J. Mixed matrix membrane materials with glassy polymers. Part 1[J]. Polymer Engineering & Science, 2002, 42(7): 1420-1431. [21] FELSKE J D. Effective thermal conductivity of composite spheres in a continuous medium with contact resistance[J]. International Journal of Heat and Mass Transfer, 2004, 47(14): 3453-3461. [22] PAL R. Permeation models for mixed matrix membranes[J]. Journal of Colloid and Interface Science, 2008, 317(1): 191-198. [23] HUANG H, REN P, XU J, et al. Improved barrier properties of poly(lactic acid) with randomly dispersed graphene oxide nanosheets[J]. Journal of Membrane Science, 2014, 464: 110-118. [24] QUAN L, LIU Z, ZHANG Q, et al. Enhanced barrier property for polyethylene terephthalate-polyethylene naphthalate copolymer by in situ polymerization with graphene oxide nanosheets[J]. Macromolecular Materials and Engineering, 2022, 2200266. [25] REN P, WANG H, HUANG H, et al. Characterization and performance of dodecyl amine functionalized graphene oxide and dodecyl amine functionalized graphene/high-density polyethylene nanocomposites: A comparative study[J]. Journal of Applied Polymer Science, 2014, 131(2): 39803. [26] 孙宾宾. 石墨烯的共价键功能化研究进展[J]. 广州化工, 2016, 44(1): 11-12. [27] 范彦如, 赵宗彬, 万武波, 等. 石墨烯非共价键功能化及应用研究进展[J]. 化工进展, 2011, 30(7): 1509-1520. [28] GENORIO B, LU W, DIMIEV A M, et al. In situ intercalation replacement and selective functionalization of graphene nanoribbon stacks[J]. ACS Nano, 2012, 6(5): 4231-4240. [29] XIANG C, COX P J, KUKOVECZ A, et al. Functionalized low defect graphene nanoribbons and polyurethane composite film for improved gas barrier and mechanical performances[J]. ACS Nano, 2013, 7(11): 10380-10386. [30] KIM J, SONG S H, IM H, et al. Moisture barrier composites made of non-oxidized graphene flakes[J]. Small, 2015, 11(26): 3124-3129. [31] LIU G, YANG F, LIU W, et al. Crystalline polymer functionalized non-oxidized graphene flakes for high gas barrier composites[J]. International Journal of Hydrogen Energy, 2021,46(7): 5472-5484. [32] LI C, JIANG T, WANG J, et al. Enhancing the oxygen-barrier properties of polylactide by tailoring the arrangement of crystalline lamellae[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6247-6255. [33] XU H, WU D, YANG X, et al. Thermostable and impermeable “nano-barrier walls” constructed by poly(lactic acid) stereocomplex crystal decorated graphene oxide nanosheets[J]. Macromolecules, 2015, 48(7): 2127-2137. [34] CHEN J, FU Y, AN Q, et al. Enhancing polymer/graphene oxide gas barrier film properties by introducing new crystals[J]. Carbon, 2014, 75: 443-451. [35] MERRITT S M J, WEMYSS A M, FARRIS S, et al. Gas barrier polymer nanocomposite films prepared by graphene oxide encapsulated polystyrene microparticles[J]. ACS Applied Polymer Materials, 2020, 2(2): 725-731. [36] GASKA K, KÁDÁR R, RYBAK A, et al. Gas barrier, thermal, mechanical and rheological properties of highly aligned graphene-LDPE nanocomposites[J]. Polymers, 2017, 9(7): 294. [37] REN F, TAN W, DUAN Q, et al. Ultra-low gas permeable cellulose nanofiber nanocomposite films filled with highly oriented graphene oxide nanosheets induced by shear field[J]. Carbohydrate Polymers, 2019, 209: 310-319. [38] 矫维成, 牛越, 丁国民, 等. 高气体阻隔石墨/环氧纳米复合材料的可控制备[J]. 中国科技论文, 2015, 10(10): 1149-1153. [39] LIN F, YANG G, NIU C, et al. Planar alignment of graphene sheets by a rotating magnetic field for full exploitation of graphene as a 2D material[J]. Advanced Functional Materials, 2018, 28(46): 1805255. [40] LIN F, ZHU Z, ZHOU X, et al. Orientation control of graphene flakes by magnetic field: Broad device applications of macroscopically aligned graphene[J]. Advanced Materials, 2017, 29(1): 1604453. [41] WU L, OHTANI M, TAKATA M, et al. Magnetically induced anisotropic orientation of graphene oxide locked by in situ hydrogelation[J]. ACS Nano, 2014, 8(5): 4640-4649. [42] WANG H, ZHANG H, ZHAO W, et al. Preparation of polymer/oriented graphite nanosheet composite by electric field-inducement[J]. Composites Science and Technology, 2008, 68(1): 238-243. [43] WU S, LADANI R B, ZHANG J, et al. Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites[J]. Carbon, 2015, 94: 607-618. [44] WANG L, DOU Y, WANG J, et al. Layer-by-layer assembly of layered double hydroxide/rubber multilayer films with excellent gas barrier property[J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 314-321. [45] 杨士萱, 矫维成, 楚振明, 等. 石墨烯定向排列增强聚合物基复合材料研究进展[J]. 玻璃钢/复合材料, 2019(3): 92-100. [46] MORIMUNE S, KOTERA M, NISHINO T, et al. Uniaxial drawing of poly(vinyl alcohol)/graphene oxide nanocomposites[J]. Carbon, 2014, 70: 38-45. [47] LIU G, YANG F, LIU W, et al. Ultra-high gas barrier composites with aligned graphene flakes and polyethylene molecules for high-pressure gas storage tanks[J]. Journal of Energy Storage, 2021, 40: 102692. [48] YANG S, WU H, LI C, et al. Constructing oriented two-dimensional large-sized modified graphene oxide barrier walls in brominated butyl rubber to achieve excellent gas barrier properties[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3976-3983. [49] REN P, WANG H, YAN D, et al. Ultrahigh gas barrier poly (vinyl alcohol) nanocomposite film filled with congregated and oriented Fe3O4@GO sheets induced by magnetic-field[J]. Composites Part A: Applied Science and Manufacturing, 2017, 97: 1-9. [50] LI P, CHEN K, ZHAO L, et al. Preparation of modified graphene oxide/polyethyleneimine film with enhanced hydrogen barrier properties by reactive layer-by-layer self-assembly[J]. Composites Part B: Engineering, 2019, 166: 663-672. |