[1] SCHAPERY R A. Stress analysis of viscoelastic composite materials[J]. Journal of Composite Materials, 1967, 1(3): 228-267. [2] WEITSMAN Y. Residual thermal stresses due to cool-down of epoxy-resin composites[J]. Journal of Applied Mechanics, 1979, 46(3): 563-567. [3] WHITE S R, HAHN H T. Process modeling of composite materials: Residual stress development during cure. Part Ⅱ. Experimental validation[J]. Journal of Composite Materials, 1992, 26(16): 2423-2453. [4] DING A, LI S, WANG J, et al. A new path-dependent constitutive model predicting cure-induced distortions in composite structures[J]. Composites Part A: Applied Science and Manufacturing, 2017, 95: 183-196. [5] MA Y, CHEN Y, LI F, et al. Effect of fiber content on microstructure and properties of 2D CF-GO/EP composite[J]. Nanomaterials,2022, 12(7): 1184. [6] MA Y, WANG J, MA J, et al. Investigation on optimization of preparation process parameters of GO-CF/SMP composites prepared by VIHPS[J]. Journal of Materials Science, 2022, 57: 4541-4555. [7] MA Y, ZHAO Y, LI F, et al. Influence of graphene oxide content on the morphology and properties of carbon fiber/epoxy composites[J]. Polymer Composites, 2021, 42(10): 5574-5585. [8] KAPPEL E, STEFANIAK D, HOLZHÜTER D, et al. Manufacturing distortions of a CFRP box-structure-a semi-numerical prediction approach[J]. Composites Part A: Applied Science and Manufacturing, 2013, 51: 89-98. [9] BAPANAPALLI S K, SMITH L V. A linear finite element model to predict processing-induced distortion in FRP laminates[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36(12): 1666-1674. [10] LIU K, YE J, TANG Z, et al. Simulation and verification of machining deformation for composite materials[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2014, 29(5): 917-922. [11] LIU K, ZHANG B, YE J, et al. Simulation and analysis of process-induced distortions for composite structures[C]//21st International Conference on Composite Materials. Xi’an: 2017. [12] 唐占文, 张博明. 复合材料设计制造一体化中的固化变形预报技术[J]. 航空制造技术, 2014, 15: 32-37. [13] LANGE J, TOLL S, MANSON J, et al. Residual stress build-up in thermoset films cured above their ultimate glass transition temperature[J]. Polymer, 1995, 36(16): 3135-3141. [14] WISNOM M R, GIGLIOTTI M, ERSOY N, et al. Mechanisms generating residual stresses and distortion during manufacture of polymer-matrix composite structures[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(4): 522-529. [15] HAHN H T, PAGANO N J. Curing stresses in composite laminates[J]. Journal of Composite Materials, 1975, 9(1): 91-106. [16] LIU K, ZHANG B, XU X, et al. Simulation and analysis of process-induced distortions in hemispherical thermostamping for unidirectional thermoplastic composites[J]. Polymer Composites, 2018, 40(5): 1786-1800. [17] 刘凯. 连续纤维增强复合材料热压工艺弹塑性变形机理与数值模拟[D]. 北京: 北京航空航天大学, 2018. [18] 王晓霞. 热固性树脂基复合材料的固化变形数值模拟[D]. 济南: 山东大学, 2012. [19] JOHNSTON A, VAZIRI R, POURSARTIP A. A plane strain model for process-induced deformation of laminated composite structures[J]. Journal of Composite Materials, 2001, 35(16): 1435-1469. [20] FERNLUND G, RAHMAN N, COURDJI R, et al. Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33: 341-351. [21] TWIGG G, POURSARTIP A, FERNLUND G. Tool-part interaction in composites processing. Part Ⅰ: Experimental investigation and analytical model[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(1): 121-133. [22] 江天, 刘卫平, 李会民, 等. 不同工艺过程下整体化复合材料结构固化变形的预报与验证[C]//“第十四届中国科协年会第11分会场: 低成本、高性能复合材料发展论坛”论文集. 石家庄: 2012. [23] 贾丽杰, 叶金蕊, 刘卫平, 等. 结构因素对复合材料典型结构件固化变形影响[J]. 复合材料学报, 2013(30): 261-265. [24] 江天, 叶金蕊, 徐吉峰, 等. 整体化复合材料结构分阶段固化变形预报方法及其实验验证[J]. 复合材料学报, 2013(5): 61-66. [25] MOBARAKIAN M, SAFARABADI M, FARAHANI M. Investigating the effects of cooling rate on distortion of asymmetric composite laminates[J]. Composite Structures, 2020, 236: 111875. |