[1] LI C, ARTHUR C, GONG X. Influence of structural parameters at microscale on the fiber reinforcement[J]. Journal of Composite Materials, 2018, 002199831879208. [2] 范玉青, 张丽华. 超大型复合材料机体部件应用技术的新进展——飞机制造技术的新跨越[J]. 航空学报, 2009(3): 534-543. [3] 沈真, 杨胜春, 陈普会. 复合材料层压板抗冲击行为及表征方法的实验研究[J]. 复合材料学报, 2008, 25(5): 125-133. [4] 沈真, 张子龙, 王进, 等. 复合材料损伤阻抗和损伤容限的性能表征[J]. 复合材料学报, 2004, 21(5): 140-145 . [5] National Academy of Sciences. New materials for next-generation commercial transport[M]. Washington, DC: National Academy Press, 1996. [6] SCHOEPPNER G A, ABRATE S. Delamination threshold loads for low velocity impact on composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(9): 903-915. [7] CHEN X, REN H, BIL C. Inspection intervals optimization for aircraft composite structures considering dent damage[J]. Journal of Aircraft, 2014, 51(1): 303-309. [8] 邱瑾. 复合材料层压板冲击损伤阻抗表征及实验研究[D]. 西安: 西北工业大学, 2005. [9] 林智育, 许希武. 复合材料层板低速冲击后剩余压缩强度[J]. 复合材料学报, 2008, 25(1): 140-146. [10] 杨宇, 孙侠生, 杨胜春, 等. 含冲击损伤复合材料层压板压缩破坏机制试验研究[J]. 复合材料学报, 2012, 29(3): 197-202. [11] DEFENSE U. Composite materials handbook MIL 17[J]. CRC Press,2000. [12] BREIMAN L. Random forests[J]. Maching Learning, 2001, 45(1): 5-32. [13] ALDERLIESTEN B C, HOMAN J J. Fatigue and damage tolerance issues of glare in aircraft structures[J]. International Journal of Fatigue, 2006, 28(10): 1116-1123. [14] WANG P, CHEN X, WANG B, et al. An improved method for lithology identification based on a hidden Markov model and random forests[J]. Geophysics, 2020, 85(6): 1-56. [15] TULEAU-MALOT P C. Variable selection using random forests[J]. Pattern Recognition Letters, 2010, 31: 2225-2236. [16] HO T K. Random decision forests[C]//Document Analysis and Recognition, 1995. Proceedings of the Third International Conference on. IEEE Computer Society, 1995. |