[1] FARHOOD N, KARUPPANAN S, YA H, et al. Burst pressure investigation of filament wound type Ⅳ composite pressure vessel[J]. AIP Conference Proceedings, 2017, 1901(1): 30017. [2] COHEN D. Influence of filament winding parameters on composite vessel quality and strength[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28(12): 1035-1047. [3] SULAIMAN S, BORAZJANI S, TANG S H. Finite element analysis of filament-wound composite pressure vessel under internal pressure[J]. Iop Conference, 2013, 50: 012061. [4] BERTIN M, VILLALONGA S, VERNÉDE M, et al. Mechanical behaviour of 700 bar type Ⅳ high pressure vessel: Comparison between simulations and experiments through Osirhys Ⅳ project[C]//Proceeding of 15th European Conference on Composite Materials (ECCM-15). 2012: 8. [5] 祖磊, 范文俊, 张骞, 等. 基于非线性有限元理论的复合材料壳体缠绕参数优化设计[J]. 复合材料科学与工程, 2022(10): 12-22. [6] HU Z Y, CHEN M H, ZU L, et al. Investigation on failure behaviors of 70 MPa Type Ⅳ carbon fiber overwound hydrogen storage vessels[J]. Composite Structures, 2021, 259: 113387. [7] COHEN D, MANTELL S C, ZHAO L. The effect of fiber volume fraction on filament wound composite pressure vessel strength[J]. Composites Part B: Engineering, 2001, 32(5): 413-429. [8] MIAN H H, WANG G, DAR U A, et al. Optimization of composite material system and lay-up to achieve minimum weight pressure vessel[J]. Applied Composite Materials, 2013, 20(5): 873-889. [9] 胡正云, 陈明和, 潘勃. Ⅳ型70 MPa气瓶非测地线缠绕强度分析与爆破试验[J]. 复合材料科学与工程, 2021(11): 94-101. [10] 奚旺, 葛庆, 肖康, 等. 挠度对大长径比复合材料壳体缠绕成型质量影响研究[J]. 复合材料科学与工程, 2021(9): 55-61, 67. [11] 冯彬彬, 袁金, 胡旭辉, 等. 大长径比固体火箭发动机壳体轻量化设计[J]. 复合材料科学与工程, 2021(5): 43-48. [12] HEIDARI-RARANI M, AHMADI-JEBELI M. Finite element modeling of failure in Ⅳ type composite pressure vessel using WCM plug-in in ABAQUS software[J]. Modares Mechanical Engineering, 2018, 18(4): 191-200. [13] RAMIREZ J P B, HALM D, GRANDIDIER J C, et al. 700 bar type Ⅳ high pressure hydrogen storage vessel burst-Simulation and experimental validation[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13183-13192. [14] TANG H, CHEN Z, XU H, et al. Computational micromechanics model based failure criteria for chopped carbon fiber sheet molding compound composites[J]. Composites Science and Technology, 2020, 200: 108400. [15] ZHAI H, WU Q, YOSHIKAWA N, et al. Time-domain asymptotic homogenization for linear-viscoelastic composites: Mathematical formulae and finite element implementation[J]. Composites Part C: Open Access, 2022(8): 100248. [16] MACRI M F, LITTLEFIELD A G, ROOT J B, et al. Modeling automatic detection of critical regions in composite pressure vessel subjected to high pressure[C]//American Society of Mechanical Engineers. Pressure Vessels and Piping Conference. 2018: V03AT03A005. [17] TANG H, ZHOU G, SUN Q, et al. Experimental and computational analysis of bending fatigue failure in chopped carbon fiber chip reinforced composites[J]. Composite Structures, 2021, 275: 114402. [18] Volume 134: Homogenization approach in engineering, in “Computing Methods in Applied Sciences and Engineering”[M]//Lecture Notes in Economics and Mathematical Systems. 1976: 137. [19] YUAN Z, FISH J. Toward realization of computational homogenization in practice[J]. International Journal for Numerical Methods in Engineering, 2008, 73(3): 361-380. [20] PEDERSON J. Finite element analysis of carbon fiber composite ripping using ABAQUS[D]. Clemson University, 2008. [21] OMAIREY S L, DUNNING P D, SRIRAMULA S. Development of an ABAQUS plugin tool for periodic RVE homogenisation[J]. Engineering with Computers, 2019, 35(2): 567-577. [22] 赫晓东, 王荣国, 矫维成, 等. 纤维缠绕复合材料压力容器封头厚度预测[J]. 复合材料学报, 2010(5): 106-121. |