[1] HEGGEMANN T, HOMBERG W. Deep drawing of fiber metal laminates for automotive lightweight structures[J]. Composite Structures, 2019, 216(5): 53-57. [2] 李光霁, 刘新玲. 汽车轻量化技术的研究现状综述[J]. 材料科学与工艺, 2020, 28(5): 47-61. [3] 马进. 新能源汽车轻量化的关键技术研究[J]. 产业创新研究, 2022(2): 45-47. [4] 姜立业, 李娜, 陈鹏, 等. 碳纤维复合材料在轻量化的应用和前景[J]. 塑料工业, 2022, 50(1): 14-19. [5] SHARMA K, SRINIVAS G. Flying smart: Smart materials used in aviation industry[J]. Materials Today: Proceedings, 2020, 27: 244-250. [6] 牟书香, 文景波, 徐俊, 等. 碳纤维在风电叶片中的应用进展[J]. 纺织导报, 2022(5): 44-46, 48-50. [7] 杨宇威, 田宇黎, 刘肖杏, 等. 整体式碳纤维复合材料纯电动汽车上车体结构件研制[J]. 玻璃钢/复合材料, 2017(7): 65-69. [8] 谢小平, 陈伟. CFRP在商用车白车身驾驶室中的轻量化研究[J]. 北京理工大学学报自然版, 2018, 38(S1): 179-182. [9] BANG S, PARK Y, KIM Y, et al. Effect of the fiber lamination angle of a carbon-fiber, laminated composite plate roof on the car interior noise[J]. International Journal of Automotive Technology, 2019, 20(1): 73-85. [10] 张君媛, 姜哲, 李仲玉, 等. 基于抗撞性的汽车B柱碳纤维加强板优化设计[J]. 汽车工程, 2018, 40(10): 1166-1171, 1178. [11] 孙冬鸣, 马其华, 孙佳睿. 基于等刚度原理的碳纤维汽车B柱抗撞性分析[J]. 玻璃钢/复合材料, 2018(11): 58-63. [12] LEE J M, MIN B J, PARK J H, et al. Design of lightweight CFRP automotive part as an alternative for steel part by thickness and lay-up optimization[J]. Materials, 2019, 12(14): 2309. [13] KIM D J, LIM J, NAM B, et al. Design and manufacture of automotive hybrid steel/carbon fiber composite B-pillar component with high crashworthiness[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8(2): 547-559. [14] 张海洋, 莫富灏, 肖志, 等. 纤维增强复合材料汽车保险杠防撞梁的轻量化研究[J]. 玻璃钢/复合材料, 2017(10): 34-40. [15] 杨旭静, 张振明, 郑娟, 等. 复合材料前防撞梁变截面多工况多目标优化设计[J]. 汽车工程, 2015, 37(10): 1130-1137,1143. [16] 陈静, 唐傲天, 田凯, 等. 碳纤维复合材料防撞梁轻量化设计[J]. 汽车工程, 2020, 42(3): 390-395. [17] 陈静, 崔晓凡, 郑晋军, 等. 基于加点多目标粒子群算法的碳纤维防撞梁优化设计[J]. 湖南大学学报(自然科学版), 2022, 49(8): 1-8. [18] 张鑫, 赵晓昱, 兰祥, 等. 汽车用碳纤维复合材料前防撞梁的轻量化与优化设计[J]. 玻璃钢/复合材料, 2019(8): 98-103. [19] 蒋荣超, 张涛, 孙海霞, 等. 基于熵权 TOPSIS 法的 CFRP防撞梁轻量化研究[J]. 汽车工程, 2021, 43(3): 421-428. [20] 黄德明, 朱孙科, 王秋林, 等. 碳纤维复合材料防撞梁低速碰撞渐进损伤及优化[J]. 复合材料学报, 2022, 39(6): 2997-3008. [21] 任明伟, 洪治国, 周玉敬, 等. 复合材料防撞梁低速碰撞优化设计[J]. 复合材料学报, 2022, 39(2): 854-862. [22] 高云凯, 刘哲, 徐亚男, 等. CFRP 在汽车覆盖件中的应用研究[J]. 汽车工程, 2020, 42(7): 978-984. [23] BERE P, DUDESCU M, NEAMŢU C, et al. [J]. Polymers, 2021, 13(9): 1374. [24] HOU W, SHEN Y, JIANG K, et al. Study on mechanical properties of carbon fiber honeycomb curved sandwich structure and its application in engine hood[J]. Composite Structures, 2022, 286: 115302. [25] 吕晓江, 刘卫国, 杨海燕, 等. 碳纤维复合材料发动机罩行人保护性能的试验验证[J]. 汽车技术, 2015(1): 59-62. [26] KIM D H, JUNG K H, KIM D J, et al. Improving pedestrian safety via the optimization of composite hood structures for automobiles based on the equivalent static load method[J]. Composite Structures, 2017, 176: 780-789. [27] VYAS G M, ANDRE A, SALA R. Toward lightweight smart automotive hood structures for head impact mitigation: Integration of active stiffness control composites[J]. Journal of Intelligent Material Systems and Structures, 2020, 31(1): 71-83. [28] 程超, 汪霞. 考虑应变率效应的碳纤维增强复合材料发动机罩行人保护分析[J]. 汽车技术, 2020(7): 25-29. [29] ZHAO Y, ZHANG Q, LI Y, et al. Theoretical, emulation and experimental analysis on auxetic re-entrant octagonal honeycombs and its applications on pedestrian protection of engine hood[J]. Composite Structures, 2021, 260: 113534. [30] 吴国荣, 陈旭辉. 汽车轮毂材料轻量化与造型设计研究[J]. 材料导报, 2021, 35(19): 19181-19185. [31] LEI F, QIU R, BAI Y, et al. An integrated optimization for laminate design and manufacturing of a CFRP wheel hub based on structural performance[J]. Structural and Multidisciplinary Optimization, 2018, 57(6): 2309-2321. [32] CZYPIONKA S, KIENHÖFER F. Weight reduction of a carbon fibre composite wheel[J]. Science and Engineering of Composite Materials, 2019, 26(1): 338-346. [33] WANG D, XU W, WANG Y, et al. Design and optimization of taperedcarbon-fiber-reinforced polymer rim for carbon/aluminum assembled wheel[J]. Polymer Composites, 2021, 42(1): 253-270. [34] GARDIE E, PARAMASIVAM V, DUBALE H, et al. Numerical analysis of reinforced carbon fiber composite material for lightweight automotive wheel application[J]. Materials Today: Proceedings, 2021, 46: 7369-7374. [35] 卢家海, 汪霞, 寇宏滨. 碳纤维复合材料避震塔强度性能多尺度优化设计[J]. 汽车技术, 2021(1): 51-56. [36] 金振超, 蒋荣超, 刘大维, 等. 碳纤维复合材料控制臂多尺度多目标优化[J]. 材料导报, 2022(S2): 111-116. [37] 刘越, 蒋荣超, 刘大维, 等. 碳纤维复合材料悬架控制臂轻量化设计研究[J]. 玻璃钢/复合材料, 2019(8): 47-52. [38] 卫原平, 杨青, 刘涛然, 等. 碳纤维复合材料控制臂的轻量化设计与验证[J]. 玻璃钢/复合材料, 2019(9): 74-78. [39] LOGANATHAN T, KUMAR K V, MADHU S. Flexural and fatigue of a composite leaf spring using finite element analysis[J]. Materials Today: Proceedings, 2020, 22: 1014-1019. [40] JIANG Q, QIAO Y, ZHAO F, et al. Composite helical spring with skin-core structure: Structural design and compression property evaluation[J]. Polymer Composites, 2021, 42(3): 1292-1304. [41] NA H J, CHUN J S, CHO K S. Development of CFRP tubes for the light-weight propeller shaft of 4WD SUV vehicles[J]. Journal of the Korean Society of Manufacturing Process Engineers, 2018, 17(4): 32-38. [42] 曹培欢, 彭梓尧, 岳晓丽, 等. 碳纤维复合材料汽车传动轴材料结构及性能一体化设计[J]. 东华大学学报(自然科学版), 2021, 47(5): 89-96, 104. [43] NIER N, PAESSLER E, WEISSHUHN J, et al. Evaluation of the moulding process for production of short-fibre-reinforced C/C-SiC composites[J]. Journal of the European Ceramic Society, 2020, 40(4): 1057-1066. [44] GUO W, BAI S, YE Y, et al. A new strategy for high-value reutilization of recycled carbon fiber: Preparation and friction performance of recycled carbon fiber felt-based C/C-SiC brake pads[J]. Ceramics International, 2019, 45(13): 16545-16553. [45] ZHANG J, CHEN J, LI Z, et al. Optimisation design of CFRP passenger car seat backplane based on impact characteristics[J]. International Journal of Crashworthiness, 2021, 26(4): 355-367. [46] LEE J, MUN J, YOON W, et al. Study on structural reliability assessment of a partition panel made of a CFRP (carbon fiber reinforced plastic)[J]. Journal of the Korean Society of Manufacturing Process Engineers, 2019, 18(10): 68-74. [47] JEONG H, LEE S K. Acoustic characteristics of CFRP speakers for the improvement of sound design of electric vehicles[J]. Transactions of the Korean Society for Noise and Vibration Engineering, 2020, 30(6): 642-651. [48] 刘颖, 马艺涛, 刘强. 短切碳纤维增强尼龙复合材料力学性能及在电池箱上的应用[J]. 复合材料科学与工程, 2021(9): 46-54. [49] 汪佳农, 赵晓昱. 碳纤维环氧树脂复合材料电池箱的轻量化研究[J]. 玻璃钢/复合材料, 2016 (12): 99-102, 33. [50] 段端祥, 赵晓昱. 纯电动汽车碳纤维复合材料电池箱体的铺层设计研究[J]. 玻璃钢/复合材料, 2018(6): 83-88. [51] 陈静, 彭博, 王登峰, 等. 碳纤维增强复合材料电池箱轻量化设计[J]. 汽车工程, 2020, 42(2): 257-263, 277. [52] LIU Z, ZHU C, ZHU P, et al. Reliability-based design optimization of composite battery box based on modified particle swarm optimization algorithm[J]. Composite Structures, 2018, 204: 239-255. [53] CHEN J, XU Y, GAO Y. Topology optimization of metal and carbon fiber reinforced plastic (CFRP) laminated battery-hanging structure[J]. Polymers, 2020, 12(11): 2495. [54] 康元春, 刘俊峰, 孟紫薇. 碳纤维复合材料电池箱轻量化研究[J]. 复合材料科学与工程, 2022(5): 66-70. [55] 朱艳荣, 崔岸, 叶辉, 等. 汽车复合材料纵梁吸能特性研究[J]. 汽车技术, 2018(5): 58-62. [56] ZHU G, SUN G, YU H, et al. Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading[J]. International Journal of Mechanical Sciences, 2018, 135: 458-483. [57] XIAO Z, MO F, ZENG D, et al. Experimental and numerical study of hat shaped CFRP structures under quasi-static axial crushing[J]. Composite Structures, 2020, 249: 112465. [58] ABDULQADIR S F, TARLOCHAN F. Composite hat structure design for vehicle safety: Potential application to B-pillar and door intrusion beam[J]. Materials, 2022, 15(3): 1084. [59] KIM D H, KIM H G, KIM H S. Design optimization and manufacture of hybrid glass/carbon fiber reinforced composite bumper beam for automobile vehicle[J]. Composite Structures, 2015, 131: 742-752. [60] 吴飞. 基于轻量化概念的碳纤维复合材料汽车保险杠设计[J]. 塑料工业, 2018, 46(8): 14-17. [61] 陈光, 路深, 赵紫剑, 等. CFRP 十二直角薄壁梁保险杠的轻量化设计[J]. 汽车工程, 2019, 41(2): 232-238. [62] GAO D, LIANG H, SHI G, et al. Multiobjective optimization of carbon fiber-reinforced plastic composite bumper based on adaptive genetic algorithm[J]. Mathematical Problems in Engineering, 2019: 8948315. [63] 吴国荣, 陈旭辉, 黄诗雯. 汽车前置保险杠材料造型与安全性比较研究[J]. 材料导报, 2022, 36(18): 199-205. [64] PINCA-BRETOTEAN C, BHANDARI R, SHARMA C, et al. An investigation of thermal behaviour of brake disk pad assembly with ansys[J]. Materials Today: Proceedings, 2021, 47: 2322-2328. [65] RAJA V, GNANASEKARAN R K, KALADGI A R, et al. Multi-disciplinary computational investigations on asymmetrical failure factors of disc brakes for various CFRP materials: A validated approach[J]. Symmetry, 2022, 14(8): 1616. [66] 宋祥文, 邹猛, 许述财, 等. 误使用工况下儿童安全座椅安全性的开发与验证[J]. 汽车工程, 2021, 43(12): 1780-1786. [67] YOON B G, YANG H M, KIM G Y. A study on improving the performance of special ambulances[J]. The Korean Journal of Emergency Medical Services, 2022, 26(1): 87-99. [68] LIU Y, GUAN M. Selected physical, mechanical, and insulation properties of carbon fiber fabric-reinforced composite plywood for carriage floors[J]. European Journal of Wood and Wood Products, 2019, 77(6): 995-1007. [69] ZHANG S, SONG H, XU L, et al. Application research on the lightweight design and optimization of carbon fiber reinforced polymers (CFRP) floor for automobile[J]. Polymers, 2022, 14(21): 4768. |