[1] LU T, ZHANG Q, JIN F. Recent progress in the development of lightweight porous material sandstructures[J]. Materials China, 2012, 31(1): 14-35. [2] ZHENG J, LONG Z, FAN H. Energy absorption mechanisms of hierarchical woven lattice composites[J]. Composites Part B: Engineering, 2012, 43(3): 1516-1522. [3] WANG M, WANG X, GUO D, A level set method for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1-2): 227-246. [4] 王向明, 苏亚东, 吴斌, 等. 微桁架点阵结构在飞机结构/功能一体化中的应用[J]. 航空制造技术, 2018, 61(10): 16-25. [5] CAI S, SUN B, LIANG J, et al. Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: Design, orientation and density[J]. Additive Manufacturing, 2017(16): 213-224. [6] FENG L, XIONG J, YANG L, et al. Shear and bending performance of new type enhanced lattice truss structures[J]. International Journal of Mechanical Sciences, 2017, 134: 589-598. [7] 卢天健, 何德坪, 陈常青, 等. 超轻多孔金属材料的多功能特性及应用[J]. 力学进展, 2006, 36(4): 517-535. [8] 朱子旭, 朱锡, 李永清, 等. 复合材料夹芯结构研究现状及其在船舶工程的应用[J]. 舰船科学技术, 2018, 40(3): 1-5. [9] ULLAH I, ELAMBASSERIL J, BRANDT M, et al. Performance of bio-inspired Kagome truss core structures under compression and shear loading[J]. Composite Structures, 2014, 118: 294-302. [10] QI D, YUA H, LIU M, et al. Mechanical behaviors of SLM additive manufactured octet-truss and truncated-octahedron lattice structures with uniform and taper beams[J]. International Journal of Mechanical Sciences, 2019, 163: 105091. [11] CAO X, ZHANG D, LIAO B, et al. Numerical analysis of the mechanical behavior and energy absorption of a novel P-lattice[J]. Thin-Walled Structures, 2020, 157: 107147. [12] 韩宗政, 段明德, 杨子威, 等. 反Kagome点阵结构主参数分析及力学行为[J]. 机械强度, 2022, 44(2): 440-446. [13] 裴勇勇, 虞筱琛, 徐海兵, 等. Kagome点阵夹芯结构平压性能研究[J]. 复合材料科学与工程, 2023(5): 5-11. [14] 马丽丽. 尼龙12在升降温和热拉伸过程中的晶体结构研究[D]. 郑州: 郑州大学, 2018. [15] 唐玉玲, 陈浩, 平学成, 等. 碳纤维增强环氧树脂复合材料金字塔点阵夹芯假脚结构在竖向载荷下的力学性能[J]. 复合材料学报, 2021, 38(3): 797-808. [16] 李响, 杨祉豪, 陈波文. 类蜂窝和六边形蜂窝夹芯等效力学参数对比与仿真[J]. 三峡大学学报(自然科学版), 2019, 41(2): 88-92. [17] NASIM M, GALVANETTO U. Mechanical characterisation of additively manufactured PA12 lattice structures under quasi-static compression[J]. Materials Today Communications, 2021, 29: 102902. [18] 徐香新. 理想八面体点阵结构力学模型优化及力学性能测试分析[J]. 力学季刊, 2021, 42(4): 696-706. [19] COMMITTEE C. Standard test method for flatwise compressive properties of sandwich cores: ASTM C365/C365M-11[S]. 2011. |