[1] UYANNA O, NAJAFI H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects[J]. Acta Astronautica, 2020, 176: 341-356. [2] 彭小波. 空天飞机热防护系统连接结构热载与强度分析[J]. 导弹与航天运载技术, 2012(6): 1-4, 9. [3] 夏甜, 许平, 尚磊, 等. 飞机隔热结构热桥效应分析与实验[J]. 航空材料学报, 2017, 37(3): 91-96. [4] 时光辉, 林晔, 金亮, 等. 一种用于飞行器的热桥阻断结构及其制备方法: CN111409814B[P]. 2021-09-14. [5] BOCK V A, NILSSON O, BLUMM J, et al. Thermal properties of carbon aerogels[J]. Journal of Non-Crystalline Solids, 1995, 185(3): 233-239. [6] LU X, NISSON O, FRICKE J, et al. Thermal and electrical conductivity of monolithic carbon aerogels[J]. Journal of Applied Physics, 1993, 73: 581-584. [7] WU K D, QIAN Z, CAO J X, et al. Ultrahigh-strength carbon aerogels for high temperature thermal insulation[J]. Journal of Colloid and Interface Science, 2021, 609: 667-675. [8] AGHABARARPOUR M, MOHSENPOUR M, MOTAHARI S, et al. Mechanical properties of isocyanate crosslinked resorcinol formaldehyde aerogels[J]. Journal of Non-Crystalline Solids, 2018, 481: 548-555. [9] GUO P L, LI J, PANG S Y, et al. Ultralight carbon fiber felt reinforced monolithic carbon aerogel composites with excellent thermal insulation performance[J]. Carbon, 2021, 183: 525-529. [10] YAN M, HU C L, LI J, et al. An unusual carbon-ceramic composite with gradients in composition and porosity delivering outstanding thermal protection performance up to 1 900 ℃[J]. Advanced Functional Materials, 2022, 32(36): 2204133. [11] SERAJI M M, KIANERSI S, HOSSEINE S H, et al. Performance evaluation of glass and rock wool fibers to improve thermal stability and mechanical strength of monolithic phenol-formaldehyde based carbon aerogels[J]. Journal of Non-Crystalline Solids, 2018, 491: 89-97. [12] 全国纤维增强塑料标准化技术委员会. 碳/碳复合材料压缩性能试验方法: GB/T 34559—2017[S]. 北京: 中国标准出版社, 2017. [13] JIA X F, DAI B W, ZHU Z X, et al. G S. Strong and machinable carbon aerogel monoliths with low thermal conductivity prepared via ambient pressure drying[J]. Carbon, 2016, 108: 551-560. [14] 姜娟, 范尚武, 蔡艳芝, 等. 三维针刺CFRP复合材料的制备及显微结构研究[J]. 应用化工, 2012, 41(7): 1224-1226. [15] 张鸿宇, 钱震, 牛波, 等. 低密度纤维增强酚醛气凝胶复合材料的力学特性及断裂机制[J]. 复合材料学报, 2022, 39(8): 3663-3673. [16] ZHENG Y, WANG S. Effect of moderately high temperature heat treatment on surface morphology and structure of quartz fibers[J]. Applied Surface Science, 2012, 258(10): 4698-4701. [17] 何雅玲, 谢涛. 气凝胶纳米多孔材料传热计算模型研究进展[J]. 科学通报, 2015, 60(2): 137-163. [18] ZHAO J J, DUAN Y Y, WANG X D, et al. A 3-D numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure[J]. Journal of Non-Crystalline Solids, 2012, 358(10): 1287-1297. [19] ZENG S Q, HUNT A, GREIF R. Mean free path and apparent thermal conductivity of a gas in a porous medium[J]. Journal of Heat Transfer, 1995, 117(3): 758-761. [20] 孙文凯. 低密度碳/酚醛复合材料传热传质与力学表观性能参数研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [21] PRADERE C, BATSALE J C, GOYHENECHE J M, et al. Thermal properties of carbon fibers at very high temperature[J]. Carbon, 2009, 47(3): 737-743. [22] WANG M, WANG J, PAN N, et al. Mesoscopic predictions of the effective thermal conductivity for micro random porous media[J]. Physical Review E, 2007, 75(3): 036702. [23] ZHOU L, SUN X, CHEN M, et al. Multiscale modeling and theoretical prediction for the thermal conductivity of porous plain-woven carbonized silica/phenolic composites[J]. Composite Structures, 2019, 215: 278-288. |