[1] 张华伟, 邵延汤, 向陈世, 等. 碳纤维复合材料层合板低速冲击损伤应力分析[J]. 精密成形工程, 2023, 15(1): 106-112. [2] FALCÓ O, LOPES C S, SOMMER D E, et al. Experimental analysis and simulation of low-velocity impact damage of composite laminates[J]. Composite Structures, 2022, 287: 115278. [3] 贾耀雄, 敖清阳, 张文正, 等. 碳纤维复合材料层压板低速冲击损伤性能分析[J]. 兵器材料科学与工程, 2022, 45(5): 170-174. [4] 曹俊超, 孙建波, 曹勇, 等. 混杂纤维增强环氧树脂复合材料高速冲击损伤行为[J]. 复合材料学报, 2022, 39(10): 4935-4948. [5] SRAVANTHI K, MAHESH V, RAO B N. Influence of micro and nano carbon fillers on impact behavior of GFRP composite materials[J]. Materials Today: Proceedings, 2021, 37: 1075-1078. [6] WANG B, HE B, WANG Z, et al. Enhanced impact properties of hybrid composites reinforced by carbon fiber and polyimide fiber[J]. Polymers, 2021, 13(16): 2599. [7] 惠旭龙, 刘小川, 白春玉, 等. 碳纤维增强复合材料的中低应变率力学性能试验研究[J]. 装备环境工程, 2018, 15(9): 81-84. [8] WENG F, FANG Y, REN M, et al. Effect of high strain rate on shear properties of carbon fiber reinforced composites[J]. Composites Science and Technology, 2021, 203: 108599. [9] TANG Z, MA D, ZHOU K, et al. The strain rate effect on the compression properties of basalt/carbon fiber reinforced composites[J]. Applied Composite Materials, 2022, 29(3): 1007-1020. [10] 胡雪垚. 二维机织碳纤维复合材料的冲击响应与损伤特性研究[D]. 西安: 西北工业大学, 2019. [11] ZHANG Z, HOU S, MAO Y, et al. Rate-related study on the ply orientation of carbon fiber reinforced epoxy composite laminates[J]. International Journal of Mechanical Sciences, 2020, 188: 105968. [12] 龙旭, 毛明晖, 卢昶衡, 等. 基于人工神经网络的混凝土类材料SHPB动态压缩性能预测[J]. 南京航空航天大学学报, 2021, 53(5): 789-800. [13] 李孟奇, 屈美娇, 何卫锋, 等. 基于BP神经网络的力学行为模型构建方法[J]. 兵器材料科学与工程, 2022, 45(3): 1-7. [14] TAO F, LIU X, DU H, et al. Learning composite constitutive laws via coupling Abaqus and deep neural network[J]. Composite Structures, 2021, 272: 114137. [15] 朱吉聪. 基于深度材料网络的碳纤维复合材料力学属性预测研究[D]. 大连: 大连理工大学, 2020. [16] DI BENEDETTO R M, BOTELHO E C, JANOTTI A, et al. Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites[J]. Composite Structures, 2021, 257: 113131. [17] TAO C, ZHANG C, JI H, et al. Application of neural network to model stiffness degradation for composite laminates under cyclic loadings[J]. Composites Science and Technology, 2021, 203: 108573. [18] MEZEIX L, RIVAS A S, RELANDEAU A, et al. A new method to predict damage to composite structures using convolutional neural networks[J]. Materials, 2023, 16(22): 7213. [19] GHOLAMI K, EGE F, BARZEGAR R. Prediction of composite mechanical properties: Integration of deep neural network methods and finite element analysis[J]. Journal of Composites Science, 2023, 7(2): 54. |