[1] TESTONI R, BERSANO A, SEGANTIN S. Review of nuclear microreactors: Status, potentialities and challenges[J]. Progress in Nuclear Energy, 2021, 138: 103822. [2] CHANG Q R, GUO S Y, ZHANG X L. Radiation shielding polymer composites: Ray-interaction mechanism, structural design, manufacture and biomedical applications[J]. Materials & Design, 2023, 233: 112253. [3] METTLER F A, MAHESH M, BHARGAVAN-CHATFIELD M, et al. Patient exposure from radiologic and nuclear medicine procedures in the united states: Procedure volume and effective dose for the period 2006-2016[J]. Radiology, 2020, 295(2): 192256. [4] REISZ J A, BANSAL N, QIAN J, et al. Effects of ionizing radiation on biological molecules-mechanisms of damage and emerging methods of detection[J]. Antioxidants & Redox Signaling, 2014, 21(2): 260-292. [5] 曾小义, 黎泽伟. 核辐射综合屏蔽材料的研究进展及发展趋势[J]. 科学技术与工程, 2020, 20(35): 14352-14358. [6] 李利娜, 孙润军, 陈美玉, 等. 辐射防护材料的研究进展[J]. 合成纤维, 2019, 48(10): 21-25. [7] 李奎江, 邹树梁, 唐德文. 核辐射屏蔽材料的研究进展及发展趋势[J]. 现代制造技术与装备, 2017(8): 178, 183. [8] BUYUK B, TUGRUL A B. Comparison of lead and WC-Co materials against gamma irradiation[J]. Acta Physica Polonica, 2014, 125(2): 423-425. [9] BAYOUMI E E, ABD EL-MAGIED M O, ELSHEHY E A, et al. Lead-bismuth tungstate composite as a protective barrier against gamma rays[J]. Materials Chemistry and Physics, 2022, 275: 1-11. [10] ALSAYED Z, BADAWI M S, AWAD R, et al. Investigation of γ-ray attenuation coefficients, effective atomic number and electron density for ZnO/HDPE composite[J]. Physica Scripta, 2020, 95(8): 085301. [11] MEHRARA R, MALEKIE S, KOTAHI S M S, et al. Introducing a novel low energy gamma ray shield utilizing polycarbonate bismuth oxide composite[J]. Scientific Reports, 2021, 11(1): 10614. [12] SOLTANI Z, BEIGZADEH A, ZIAIE F, et al. Effect of particle size and percentages of Boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: Experimental and simulation studies[J]. Radiation Physics and Chemistry, 2016, 127: 182-187. [13] ABUALROOS N J, YAACOB K A, ZAINON R. Radiation attenuation effectiveness of polymer-based radiation shielding materials for gamma radiation[J]. Radiation Physics and Chemistry, 2023, 212: 111070. [14] TASHLYKOV O L, MILMAN, I I, ALADAILAH M W, et al. An extensive experimental study on the role of micro-size pozzolana in enhancing the gamma-ray shielding properties of high-density polyethylene[J]. Radiation Physics and Chemistry, 2023, 212: 111079. [15] TOTO E, LAMBERTINI L, LAURENZI S, et al. Recent advances and challenges in polymer-based materials for space radiation shielding[J]. Polymers, 2024, 16(3): 1-35. [16] HOSSEINI M A, MALEKIE S, KAZEMI F. Experimental evaluation of gamma radiation shielding characteristics of polyvinyl alcohol/tungsten oxide composite: A comparison study of micro and nano sizes of the fillers[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1026: 166214. [17] AKMAN F, KAAL M R, ALMOUSA N, et al. Gamma-ray attenuation parameters for polymer composites reinforced with BaTiO3 and CaWO4 compounds[J]. Progress in Nuclear Energy, 2020, 121: 103257. [18] SHAHZAD K, KAUSAR A, MANZOOR S, et al. Views on radiation shielding efficiency of polymeric composites/nanocomposites and multi-layered materials: Current State and Advancements[J]. Radiation, 2023, 3(1): 1-20. [19] SAZALI M A, RASHID N K A M, HAMZAH K. A review on multilayer radiation shielding[J]. IOP Conference Series Materials Science and Engineering, 2019, 555: 012008. [20] BLACHOWICZ T, EHRMANN A. Shielding of cosmic radiation by fibrous materials[J]. Fibers, 2021, 9(10): 1-15. [21] LIU B, GU Y, LIU Y, et al. Space neutron radiation shielding property of continuous fiber and functional filler reinforced polymer composite using Monte Carlo simulation[J]. Composites Part A: Applied Science and Manufacturing, 2023, 168: 107483. [22] LI R, GU Y, ZHANG G, et al. Radiation shielding property of structural polymer composite: Continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide[J]. Composites Science and Technology, 2017, 143: 67-74. [23] LI R, GU Y, YANG Z, et al. Gamma ray shielding property, shielding mechanism and predicting model of continuous basalt fiber reinforced polymer matrix composite containing functional filler[J]. Materials & Design, 2017, 124: 121-130. [24] WANG P, TANG X, CHAI H, et al. Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm2O3/polyimide gamma ray/neutron shielding material[J]. Fusion Engineering and Design, 2015, 101: 218-225. [25] SALEEM R A A, ABDELAL N, ALSABBAGH A, et al. Radiation shielding of fiber reinforced polymer composites incorporating lead nanoparticles-an empirical approach[J]. Polymers, 2021, 13(21): 3699-3699. [26] MANN K S, RANI A, HEER M S. Shielding behaviors of some polymer and plastic materials for gamma-rays[J]. Radiation Physics & Chemistry, 2015, 106: 247-254. [27] MIDGLEY S. Energy resolution for accurate measurements of the X-ray linear attenuation coefficient[J]. Radiation Physics and Chemistry, 2006, 75(9): 936-944. [28] LIU Y, LIU B, GU Y, et al. Gamma radiation shielding property of continuous fiber reinforced epoxy matrix composite containing functional filler using Monte Carlo simulation[J]. Nuclear Materials and Energy, 2022, 33: 101246. |