[1] 于永初. 《节能与新能源汽车技术路线图2.0》引领中国汽车产业发展[J]. 汽车工艺师, 2020(11): 8-10. [2] ZHANG M, LV H, KANG H R, et al. A literature review of failure prediction and analysis methods for composite high-pressure hydrogen storage tanks[J]. International Journal of Hydrogen Energy, 2019, 44(47): 25777-25799. [3] MELNICHUK M, GARDAVAUD Q, THIEBAUD F, et al. Numerical assestments of maximum depressurisation rate for polymer materials under high-pressure hydrogen[J]. International Journal of Hydrogen Energy, 2021, 46(53): 27088-27095. [4] MELNICHUK M, THIÉBAUD F, PERREUX D. Non-dimensional assessments to estimate decompression failure in polymers for hydrogen systems[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6738-6744. [5] PEPIN J, LAINE E, GRANDIDIER J C, et al. Determination of key parameters responsible for polymeric liner collapse in hyperbaric type Ⅳ hydrogen storage vessels[J]. International Journal of Hydrogen Energy, 2018, 43(33): 16386-16399. [6] BLANC-VANNET P, PAPIN P, WEBER M, et al. Sample scale testing method to prevent collapse of plastic liners in composite pressure vessels[J]. International Journal of Hydrogen Energy, 2019, 44(17): 8682-8691. [7] ONO H, FUJIWARA H, ONOUE K, et al. Influence of repetitions of the high-pressure hydrogen gas exposure on the internal damage quantity of high-density polyethylene evaluated by transmitted light digital image[J]. International Journal of Hydrogen Energy, 2019, 44(41): 23303-23319. [8] KULKARNI S S, CHOI K S, KUANG W, et al. Damage evolution in polymer due to exposure to high-pressure hydrogen gas[J]. International Journal of Hydrogen Energy, 2021, 46(36): 19001-19022. [9] YERSAK T A, BAKER D R, YANAGISAWA Y, et al. Predictive model for depressurization-induced blistering of type Ⅳ tank liners for hydrogen storage[J]. International Journal of Hydrogen Energy, 2017, 42(8): 28910-28917. [10] FUJIWARA H, ONO H, ONOUE K, et al. High-pressure gaseous hydrogen permeation test method-property of polymeric materials for high-pressure hydrogen devices (1)[J]. International Journal of Hydrogen Energy, 2020, 45(53): 29082-29094. [11] YAMABE J, KOGA A, NISHIMURA S. Failure behavior of rubber O-ring under cyclic exposure to high-pressure hydrogen gas[J]. Engineering Failure Analysis, 2013, 35: 193-205. [12] 查燕, 王修磊, 杨卫民, 等. Ⅳ型储氢瓶塑料内胆坍塌剥离机理数值仿真研究[C]//第十七届中国CAE工程分析技术年会. 海口: 2021: 157-159, 173. [13] PAWLAK A. Cavitation during tensile deformation of isothermally crystallized polypropylene and high-density polyethylene[J]. Colloid and Polymer Science, 2013, 291(4): 773-787. [14] PEPIN J, LAINE E, GRANDIDIER J-C, et al. Replication of liner collapse phenomenon observed in hyperbaric type Ⅳ hydrogen storage vessel by explosive decompression experiments[J]. International Journal of Hydrogen Energy, 2018, 43(9): 4671-4680. [15] SU Y, LV H, ZHOU W, et al. Review of the hydrogen permeability of the liner material of type Ⅳ on-board hydrogen storage tank[J]. World Electric Vehicle Journal, 2021, 12(3): 130. [16] YAMABE J, NISHIMURA S. Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas[J]. International Journal of Hydrogen Energy, 2009, 34(4): 1977-1989. [17] GERLAND M, BOYER S A E, CASTAGNET S. Early stages of cavitation in a stretched and decompressed poly (vinylidene fluoride) exposed to diffusive hydrogen, observed by transmission electronic microscopy at the nanoscale[J]. International Journal of Hydrogen Energy, 2016, 41(3): 1766-1774. [18] KOGA A, UCHIDA K, YAMABE J, et al. Evaluation on high-pressure hydrogen decompression failure of rubber O-ring using design of experiments[J]. International Journal of Automotive Engineering, 2011, 2(4): 123-129. [19] ONO H, NAIT-ALI A, KANE DIALLO O, et al. Influence of pressure cycling on damage evolution in an unfilled EPDM exposed to high-pressure hydrogen[J]. International Journal of Fracture, 2018, 210(1): 137-152. [20] BAUDET C, GRANDIDIER J C, CANGEMI L. A damage model for the blistering of polyvinylidene fluoride subjected to carbon dioxide decompression[J]. Journal of the Mechanics and Physics of Solids, 2011, 59(9): 1909-1926. [21] DEWIMILLE B, MARTIN J, JARRIN J. Behavior of thermoplastic polymers during explosive decompressions in a petroleum environment[J]. Journal De Physique Ⅳ, 1993, 3(C7): 1559-1564. [22] 陈旦. 碳纤维缠绕Ⅳ型复合材料压力容器的结构设计与研制[D]. 武汉: 武汉理工大学, 2019. [23] 贾子璇. 塑料内衬复合材料储氢气瓶的结构设计及有限元验证[D]. 北京: 北京化工大学, 2020. [24] WANG L, ZHENG C, LUO H, et al. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel[J]. Composite Structures, 2015, 134: 475-482. [25] RAMIREZ J P B, HALM D, GRANDIDIER J-C, et al. 700 bar type Ⅳ high pressure hydrogen storage vessel burst-simulation and experimental validation[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13183-13192. [26] 陈明和, 胡正云, 贾晓龙, 等. Ⅳ型车载储氢气瓶关键技术研究进展[J]. 压力容器, 2020, 37(11): 39-50. [27] MAGNEVILLE B, GENTILLEAU B, VILLALONGA S, et al. Modeling, parameters identification and experimental validation of composite materials behavior law used in 700 bar type Ⅳ hydrogen high pressure storage vessel[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13193-13205. [28] HILL R. A theory of the yielding and plastic flow of anisotropic metals[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1948, 193(1033): 281-297. [29] TSAI S W. Strength characteristics of composite materials[R]. Philco Corp Newport Beach CA, 1965. [30] HOFFMAN O. The Brittle Strength of Orthotropic Materials[J]. Journal of Composite Materials, 1967, 1(2): 200-206. [31] TSAI S W, WU E M. A General theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5(1): 58-80. [32] HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials, 1973, 7(4): 448-464. [33] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. [34] CHANG F K, CHANG K Y. A Progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials, 1987, 21(9): 834-855. [35] KADDOUR A S, HINTON M J, SMITH P A, et al. The background to the third world-wide failure exercise[J]. Journal of Composite Materials, 2013, 47(20-21): 2417-2426. [36] PUCK A, SCHURMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology, 1998, 58(7): 1045-1067. [37] DAVILA C, JAUNKY N, GOSWAMI S. Failure criteria for FRP laminates in plane stress[C]//Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference. 2003: 1991. [38] DÁVILA C G, CAMANHO P P, ROSE C A. Failure criteria for FRP laminates[J]. Journal of Composite Materials, 2005, 39(4): 323-345. [39] PINHO S T, DÁVILA C G, CAMANHO P P, et al. Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity[R]. 2005. [40] PINHO S T, DARVIZEH R, ROBINSON P, et al. Material and structural response of polymer-matrix fibre-reinforced composites[J]. Journal of Composite Materials, 2012, 46(19-20): 2313-2341. [41] HA S K, JIN K K, HUANG Y. Micro-mechanics of failure (MMF) for continuous fiber reinforced composites[J]. Journal of Composite Materials, 2008, 42(18): 1873-1895. [42] BARTHÉLEMY H, WEBER M, BARBIER F. Hydrogen storage: Recent improvements and industrial perspectives[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7254-7262. [43] MAUS S D-P, HAPKE J, RANONG C N, et al. Filling procedure for vehicles with compressed hydrogen tanks[J]. International Journal of Hydrogen Energy, 2008, 33(17): 4612-4621. [44] GENTILLEAU B, TOUCHARD F, GRANDIDIER J C. Numerical study of influence of temperature and matrix cracking on type Ⅳ hydrogen high pressure storage vessel behavior[J]. Composite Structures, 2014, 111: 98-110. [45] HU Z, CHEN M, ZU L, et al. Investigation on failure behaviors of 70 MPa type Ⅳ carbon fiber overwound hydrogen storage vessels[J]. Composite Structures, 2020, 259(9): 113387. [46] 郭晓璐, 刘孝亮, 徐双庆. 车载储氢气瓶循环特性研究进展[C]//第十届全国压力容器学术会议. 杭州: 2021: 840-846. [47] WANG D, LIAO B, HUA Z, et al. Experimental analysis on residual performance of used 70 MPa type Ⅳ composite pressure vessels[J]. Journal of Failure Analysis and Prevention, 2019, 19(1): 204-211. [48] CHOU H Y, MOURITZ A, BANNISTER M K, et al. Acoustic emission analysis of composite pressure vessels under constant and cyclic pressure[J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 111-120. [49] WU E, ZHAO Y, ZHAO B, et al. Fatigue life prediction and verification of high-pressure hydrogen storage vessel[J]. International Journal of Hydrogen Energy, 2021, 46(59): 30412-30422. [50] MUNZKE D, DUFFNER E, EISERMANN R, et al. Monitoring of type Ⅳ composite pressure vessels with multilayer fully integrated optical fiber based distributed strain sensing[J]. Materials Today: Proceedings, 2021, 34: 217-223. [51] MOTAHARINEJAD V, DELNAUD L, FOUQUE M, et al. Enhancement of adhesion between the polymeric liner and the metallic connector of high-pressure hydrogen storage tank[J]. International Journal of Material Forming, 2021, 14: 249-260. [52] JOHNSON K, VEENSTRA M J, GOTTHOLD D, et al. Advancements and opportunities for on-board 700 bar compressed hydrogen tanks in the progression towards the commercialization of fuel cell vehicles[J]. SAE International Journal of Alternative Powertrains, 2017, 6(2): 201-218. [53] HUA T Q, ROH H-S, AHLUWALIA R K. Performance assessment of 700-bar compressed hydrogen storage for light duty fuel cell vehicles[J]. International Journal of Hydrogen Energy, 2017, 42(40): 25121-25129. [54] PARK G, JANG H, KIM C. Design of composite layer and liner for structure safety of hydrogen pressure vessel (type 4)[J]. Journal of Mechanical Science and Technology, 2021, 35(8): 3507-3517. [55] RAMIREZ J P B, HALM D, GRANCLIDIER J C, et al. A fixed directions damage model for composite materials dedicated to hyperbaric type Ⅳ hydrogen storage vessel-Part Ⅰ: Model formulation and identification[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13165-13173. [56] RAMIREZ J P B, HALM D, GRANDIDIER J C, et al. A fixed directions damage model for composite materials dedicated to hyperbaric type Ⅳ hydrogen storage vessel-Part Ⅱ: Validation on notched structures[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13174-13182. [57] LEH D, SAFFRE P, FRANCESCATO P, et al. A progressive failure analysis of a 700 bar type Ⅳ hydrogen composite pressure vessel[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13206-13214. [58] BERTIN M, VILLALONGA S, VERNÈDE M, et al. Mechanical behaviour of 700 bar type Ⅳ high pressure vessel: Comparison between simulations and experiments through Osirhys Ⅳ project[C]//Proceedings of the 15th European Conference on Composite Materials (ECCM-15). 2012: 8. [59] GENTILLEAU B, VILLALONGA S, NONY F, et al. A probabilistic damage behavior law for composite material dedicated to composite pressure vessel[J]. International Journal of Hydrogen Energy, 2015, 40: 13160-13164. [60] RAFIEE R, TORABI M A. Stochastic prediction of burst pressure in composite pressure vessels[J]. Composite Structures, 2018, 185: 573-583. [61] RAMIREZ J B, HALM D, GRANDIDIER J C. Deterministic vs probabilistic burst prediction of wound composite pressure vessel[C]//Proceedings of the ICCST 9-International Conference on Composite Science and Technology, Sorrento, Naples, Italy, 24-26 April 2013. 2013. [62] 上海石化碳纤维储氢气瓶技术取得新突破[N]. 中国石化报, 2021-10-20 (001). |