复合材料科学与工程 ›› 2024, Vol. 0 ›› Issue (9): 57-66.DOI: 10.19936/j.cnki.2096-8000.20240928.009

• 应用研究 • 上一篇    下一篇

基于实测数据的飞机复合材料构件外形调控

张德伟1, 卫炜1*, 张聘2, 王琦2, 赵聪1, 安鲁陵1   

  1. 1.南京航空航天大学 机电学院,南京 210016;
    2.中国航空工业集团有限公司 济南特种结构研究所,济南 250023
  • 收稿日期:2023-12-11 出版日期:2024-09-28 发布日期:2024-10-18
  • 通讯作者: 卫炜(1972—),男,学士,副教授,从事数字化制造、飞机装配等方面的研究,meewwei@nuaa.edu.cn。
  • 作者简介:张德伟(1998—),男,硕士研究生,从事飞机复合材料装配方面的研究。
  • 基金资助:
    国家自然科学基金(51975280)

Shape control of aircraft composite components based on measured data

ZHANG Dewei1, WEI Wei1*, ZHANG Pin2, WANG Qi2, ZHAO Cong1, AN Luling1   

  1. 1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. AVIC Research Institute for Special Structures of Aeronautical Composites, Jinan 250023, China
  • Received:2023-12-11 Online:2024-09-28 Published:2024-10-18

摘要: 在飞机复合材料构件装配中,目前常通过卡板等刚性约束方法消除其成型误差,这种调控方法可能会造成复合材料损伤。本文通过数字化测量获得复合材料构件实物外形数据,并重构其外形模型,设计了具有柔性的多点施力压头对构件进行外形调控。提出了将有限元计算与遗传算法相结合的求解方案,目标是在保证复合材料构件不发生损伤的前提下,使其实际外形尽量贴合理论外形。通过某型飞机雷达罩复合材料罩体实例验证此方法,发现按照利用约束卡板的原方案对罩体进行外形约束,其实际外形与理论外形在给定位置处精确度仅有66.7%,而通过本方法利用多点施力压头对罩体进行外形调控,其实际外形与理论外形在给定位置处精确度达到91.7%,相比原方案提高了25%。

关键词: 复合材料, 数字化测量, 逆向工程, ABAQUS, 外形调控

Abstract: In the assembly of aircraft composite components, molding errors are often eliminated through rigid constraint methods such as pallets. The constraint profile of the pallets is consistent with the theoretical shape of the component. Since composite materials have uncontrollable molding errors, this rigid constraint the control method may cause composite material damage. This paper obtains the physical shape data of composite material components through digital measurement, reconstructs its shape model, and designs a flexible multi-point force-applying head to control the shape of the component. A solution scheme that combines finite element calculations with genetic algorithms is proposed. The goal is to ensure that the actual shape of the composite material components matches the theoretical shape as closely as possible without causing damage. This method is verified through an example of a certain type of aircraft radome composite material cover. The shape of the cover is constrained according to the original plan of using a constraint card plate. The accuracy between the actual shape and the theoretical shape at a given position is only 66.7%. Through this method, a multi-point pressure head is used to control the shape of the cover. The accuracy between the actual shape and the theoretical shape at a given position reaches 91.7%, which is 25% higher than the original plan.

Key words: composite, digitized measurement, reverse engineering, ABAQUS, shape control

中图分类号: