[1] LU Q, HAN H, HU L, et al. An integrated design of light-weight graded structure for hypersonic vehicles[C]//Asia Pacific International Symposium on Aerospace Technology (2015: Cairns, Qld.). Canberra: Engineers Australia, 2015: 634-638. [2] 冯志海, 李俊宁, 田跃龙, 等. 航天先进复合材料研究进展[J]. 复合材料学报, 2022, 39(9): 4187-4195. [3] BUFFENOIR F, ZEPPA C, PICHON T, et al. Development and flight qualification of the C-SiC thermal protection systems for the IXV[J]. Acta Astronautica, 2016, 124: 85-89. [4] BALAT-PICHELIN M, CHARPENTIER L, PANERAI F, et al. Passive/active oxidation transition for CMC structural materials designed for the IXV vehicle re-entry phase[J]. Journal of the European Ceramic Society, 2015, 35(2): 487-502. [5] UYANNA O, NAJAFI H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects[J]. Acta Astronautica, 2020, 176: 341-356. [6] 卢子兴, 杨振宇, 李仲平. 三维编织复合材料力学行为研究进展[J]. 复合材料学报, 2004, 21(2): 1-7. [7] 严柳芳. 缝合技术在复合材料上的应用及发展[J]. 产业用纺织品, 2007(2): 1-5. [8] HASHIN Z. Analysis of stiffness reduction of cracked cross-ply laminates[J]. Engineering Fracture Mechanics, 1986, 25(5-6): 771-778. [9] 高峰. 复合材料层压板层间颗粒增韧技术[D]. 西安: 西北工业大学, 2004. [10] 张向阳. Z-pin增强苯并噁嗪层合板制备及力学性能研究[D]. 南京: 南京航空航天大学, 2013. [11] CARTIÉ D D R, PARTRIDGE I K. Delamination behaviour of Z-pinned laminates[J]. European Structural Integrity Society, 2000, 27: 27-36. [12] 谢永旺, 夏雨, 许学伟, 等. 航天飞行器热防护系统研究概况及其发展趋势[J]. 空天技术, 2022(4): 73-86. [13] 陈玉峰, 洪长青, 胡成龙, 等. 空天飞行器用热防护陶瓷材料[J]. 现代技术陶瓷, 2017, 38(5): 311-390. [14] 黄杰. 高超声速飞行器热防护系统综合研究[D]. 南京: 南京航空航天大学, 2019. [15] MILOS F S, SQUIRE T H. Thermostructural analysis of X-34 wing leading-edge tile thermal protection system[J]. Journal of Spacecraft and Rockets, 1999, 36(2): 189-198. [16] 裴雨辰, 李文静, 张凡, 等. 刚性陶瓷隔热瓦研究状况及启示[J]. 飞航导弹, 2012(3): 93-96. [17] BIAMINO S, ANTONINI A, EISENMENGER-SITTNER C, et al. Multilayer SiC for thermal protection system of space vehicles with decreased thermal conductivity through the thickness[J]. Journal of the European Ceramic Society, 2010, 30(8): 1833-1840. [18] 冯志海, 师建军, 孔磊, 等. 航天飞行器热防护系统低密度烧蚀防热材料研究进展[J]. 材料工程, 2020, 48(8): 14-24. [19] 李阳. 航天器TPS用耐高温烧蚀修复剂研究[D]. 南京: 南京航空航天大学, 2011. [20] 欧阳金栋, 刘慧慧, 邓进, 等. 高超声速飞行器结构热防护技术现状综述[J]. 教练机, 2017(1): 39-43. [21] LU Q, JIAN G Q, ZHANG X J, et al. Design of lightweight graded hot structures for hypersonic vehicles[J]. Applied Mechanics and Materials, 2013, 271: 838-841. [22] 邹军锋, 李文静, 刘斌, 等. 飞行器用热防护材料发展趋势[J]. 宇航材料工艺, 2015, 45(4): 10-15. [23] 杨强. 一体化热防护系统设计与综合效能评估方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [24] 孟松鹤, 杨强, 霍施宇, 等. 一体化热防护技术现状和发展趋势[J]. 宇航学报, 2013, 34(10): 1295-1302. [25] BEY K S, BUTCHER K J. Thermal-structural analysis of structurally-integrated thermal protection systems[C]//Fundamental Aeronautics Program Annual Meeting. Atlanta, Georgia, USA: 2008. [26] STEPHENS C, BUTCHER K J. Optmization and fabrication studies in the development of structurally integrated thermal protection system technology: DFRC -1065[R]. California, USA: NASA Dryden Flight Research Center, 2009. [27] BREWER A R. Edgewise compression testing of STIPS-0[R]. Hampton, Virginia, USA: Analytical Services and Materials, Inc., 2011. [28] STEEVES C A, HE M, MAXWELL P T, et al. Design of a robust, multifunctional thermal protection system incorporating zero expansion lattices[C]//ASME International Mechanical Engineering Congress and Exposition, IMECE 2007. Seattle, USA: 2007. [29] WAN X, WEI K, TAO Y, et al. Thermal protection system integrating graded insulation materials and multilayer ceramic matrix composite cellular sandwich panels[J]. Composite Structures, 2019, 209: 523-534. [30] 陈磊. 新型Z-pin结构设计及强度性能研究[D]. 天津: 天津工业大学, 2022. [31] 陈磊, 谢军波, 方静, 等. 螺旋式Z-pin的制备及力学性能研究[J]. 纺织科学与工程学报, 2022, 39(2): 71-75. [32] JULIAN H, GERHARD S. Compression properties of composite laminates reinforced with rectangular Z-pins[J]. Composites Science & Technology, 2018, 167: 463-469. [33] LI L S, LI Y, HUAN D J. Study on single-lap joints tensile properties under fire and thermal conductivity of Z-pin reinforced thermal protection composites[J]. Journal of Physics: Conference Series, 2020, 1507(6): 062009. [34] 陶永强. Z-pins增强陶瓷基复合材料接头的连接性能[D]. 西安: 西北工业大学, 2007. [35] 许爱华. Z-pin增强单搭接头动态力学性能研究[D]. 南京: 南京航空航天大学, 2017. [36] 李吻. Z-pin增强帽型加筋壁板连接机理与力学性能研究[D]. 南京: 南京航空航天大学, 2016. [37] 周洲. Z-pin拉挤用双马来酰亚胺树脂改性及工艺研究[D]. 南京: 南京航空航天大学, 2021. [38] 孙先念, 郑长良. 层合复合材料Z-pinning增强技术的力学进展[J]. 航空学报, 2006(6): 1194-1202. [39] BARRETT D J. The mechanics of Z-fiber reinforcement[J]. Composite Structures, 1996, 36(1/2): 23-32. [40] FUSCO T M, MAGEE C, FREITAS G. Method and system for inserting reinforcing elements in a composite structure: U.S. Patent 5, 589, 015[P]. 1996-12-31. [41] 杨鹏, 张黎. Z-pin增强技术在碳纤维复合材料中的现状与展望[J]. 山东工业技术, 2016(5): 33-34. [42] FREITAS G, MAGEE C, DARDZINSKI P, et al. Fiber insertion process for improved damage tolerance in aircraft laminates[J]. Journal of Advanced Materials(USA), 1994, 25(4): 36-43. [43] CHOI I H, AHN S M, YEOM C H, et al. Manufacturing of Z-pinned composite laminates[C]//In the 17th Internaltional Conference on Composites Materials. Edinburgh: 2009. [44] REIS C A, REIS D A. Z-fiber pinning tool: US Patent 6049970[P]. 2000. [45] LOGAN O J, MAHADIK Y S, HALLETT S. Composite reinforcement: US Patent 0171757A1[P]. 2019. [46] 陈原, 于福杰, 胡铭铎, 等. 航空复合材料的组合凸轮式Z-pin预植入机的设计与实现[J]. 光学精密工程, 2019, 27(2): 379-392. [47] 胡铭铎. 航空复合材料的组合凸轮式Z-pin预植入机研究[D]. 威海: 山东大学, 2018. [48] 段学俊, 吴庆堂, 邹阳, 等. 一种高可靠性高效率Z-pin过渡植入机构的设计[J]. 复合材料科学与工程, 2022(10): 70-75. [49] 段学俊, 吴庆堂, 商伟辉, 等. 高性能Z-pin过渡植入装置的研发[J]. 新技术新工艺, 2022(8): 60-63. [50] CARTIE D D R, PARTRIDGE I K. Delamination behaviour of Z-pinned laminates[J]. European Structural Integrity Society, 2000, 27: 27-36. [51] CHANG P, MOURITZ A P, COX B N. Flexural properties of Z-pinned laminates[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(2): 244-251. [52] HAN L J, LI T H, LIU J J, et al. Interlaminar fracture behavior of 3D C/C composites using Z-pins as through-thickness reinforcements[J]. New Carbon Materials, 2004, 19: 97-102. [53] CARTIÉ D D R, TROULIS M, PARTRIDGE I K. Delamination of Z-pinned carbon fibre reinforced laminates[J]. Composites science and Technology, 2006, 66(6): 855-861. [54] 孙涛. Z-pin增强树脂基层合板制备与力学性能研究[D]. 南京: 南京航空航天大学, 2010. [55] 杨帆, 郑锡涛, 李亚智, 等. Z-pin增强复合材料Ⅰ型断裂韧性数值分析[J]. 复合材料学报, 2009, 26(4): 163-168. [56] 马丹. Z-pin增强双马来酰亚胺层合板制备及力学性能研究[D]. 南京: 南京航空航天大学, 2011. [57] 李宁. Z-pin增强酚醛层合板制备工艺及性能研究[D]. 南京: 南京航空航天大学, 2012. [58] 张光武. SiC/有机硅改性酚醛树脂复合材料的耐温性研究[D]. 武汉: 武汉理工大学, 2012. [59] 张天才, 吉法祥, 陈亮, 等. 耐温抗烧蚀酚醛树脂的合成及其性能研究[J]. 表面技术, 2009, 38(6): 54-56, 69. [60] 刘韡, 矫桂琼, 张为民. Z-pin增强CMC层间Ⅰ+Ⅱ混合型断裂韧性[J]. 材料科学与工程学报, 2012, 30(3): 357-360, 383. [61] GRIGORIOU K, LADANI R B, MOURITZ A P. Electrical properties of multifunctional Z-pinned sandwich composites[J]. Composites Science and Technology, 2019, 170(20): 60-69. [62] PEGORIN F, PINGKARAWAT K, MOURITZ A P. Controlling the electrical properties of fibre-polymer composites using Z-pins[J]. Composites Science and Technology, 2017, 150: 167-173. [63] PEGORIN F, PINGKARAWAT K, MOURITZ A P. Numerical analysis of the heat transfer properties of Z-pinned composites[J]. Composites Communications, 2018(8): 14-18. [64] LI M, FANG Z, WANG S, et al. Thermal conductivity enhancement and heat transport mechanism of carbon fiber Z-pin graphite composite structures[J]. Composites Part B: Engineering, 2019, 172: 603-611. [65] MOURITZ A P. Review of Z-pinned laminates and sandwich composites[J]. Composites Part A: Applied Science and Manufacturing, 2020, 139: 106128. [66] 沃西源. 复合材料连接方法[J]. 航天返回与遥感, 1997(4): 31-39, 16. [67] 王晓旭, 陈利. 复合材料Z-pinning技术的应用与发展[J]. 宇航材料工艺, 2009, 39(6): 10-14. [68] 董晓阳. Z-pin增强树脂基复合材料单搭接头连接性能研究[D]. 南京: 南京航空航天大学, 2014. [69] 马玉娥, 杜永华, 许盼福. 基于黏聚区模型的Z-pin增强复合材料T型接头分层损伤研究[J]. 西北工业大学学报, 2015, 33(3): 375-381. [70] 张向阳. Z-pin增强复合材料加筋蒙皮结构力学性能及损伤机理研究[D]. 南京: 南京航空航天大学, 2017. [71] ZHANG Y, YAN L, MIAO M, et al. Microstructure and mechanical properties of Z-pinned carbon fiber reinforced aluminum alloy composites[J]. Materials & Design, 2015, 86: 872-877. [72] 田旭, 肖军, 李勇. X-cor夹层结构试制与性能研究[J]. 飞机设计, 2004(1): 22-25. [73] MARASCO A I, CARTIÉ D D R, PARTRIDGE I K, et al. Mechanical properties balance in novel Z-pinned sandwich panels: Out-of-plane properties[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(2): 295-302. [74] 杜龙, 矫桂琼, 黄涛, 等. X状Z-pin增强泡沫夹层结构的剪切性能[J]. 复合材料学报, 2007(6): 140-146. [75] MARASCO A I. Analysis and evaluation of mechanical performance of reinforced sandwich structures: X-Cor and K-Cor[D]. Cranfield University, 2005. [76] NANAYAKKARA A, FEIH S, MOURITZ A P. Experimental analysis of the through-thickness compression properties of Z-pinned sandwich composites[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(11): 1673-1680. [77] O’BRIEN T K, PARIS I L. Exploratory investigation of failure mechanisms in transition regions between solid laminates and X-cor® truss sandwich[J]. Composite Structures, 2002, 57(1-4): 189-204. |