[1] 沈军,谢怀勤.航空用复合材料的研究与应用进展[J].玻璃钢/复合材料,2006,(05): 4852.
[2] 赵鹏飞,赵景丽,何颖.共固化成型无人机用复合材料/蜂窝夹层结构面板的性能[J].玻璃钢/复合材料,2009,(01): 6264.
[3] 齐红宇,温卫东.先进纤维增强复合材料疲劳寿命的预测[J].玻璃钢/复合材料,2000,(05): 69.
[4] Kashtalyan M, Soutis C. Stiffness degradation in crossply laminates damaged by transverse cracking and splitting[J]. Applied Science and Manufacturing, 2000, 31(4): 335351.
[5] Zhang H., Levon M.. Prediction of effective stiffness in [m/90n]s laminates due to transverse cracking[J]. Journal of Composite Materials, 2007, 41(1): 89109.
[6] Zhang J. Q., Herrmann K. P.. Stiffness degradation induced by multilayer intralaminar cracking in Lim composite laminates[J]. Composites: Part A, 1999, 30(5): 683706.
[7] 冯培锋等.层板复合材料的疲劳剩余刚度统计分布模型[J].应用力学学报,2003, 20(3): 5256.
[8] 蒋咏秋,叶林.复合材料层合板损伤过程中的刚度分析[J].复合材料学报,1996, 13(2): 124130.
[9] Rubenis O., Sparnins E.. The effect of Crack Spacing Distribution on Stiffness Reduction of Crossply Laminates[J]. Applied Composite Materials, 2007, 14(1): 5966.
[10] Duan X., Yao W. X.. Multidirectional stiffness degradation induced by matrix cracking in composite laminates[J]. International Journal of Fatigue, 2002, 24(24): 119125.
[11] Poursartip A., Ashby M. F., Beaumont W R. The fatigue damage mechanics of a carbon fiber composite laminates[J]. Composites Science and Technology, 1986, 25: 193218.
[12] 冯培锋等.层板复合材料的疲劳剩余刚度衰退模型[J].固体力学学报,2003, 24(1): 4652.
[13] Lee L. J., yang J. N., Shen D Y. Prediction of fatigue life matrixdominated composite laminates[J]. Composites Science and Technology, 1993, 46: 2128.
[14] Hwang W., Han K. S.. Fatigue modulus concept in composite materials[J]. Composites Science and Technology, 1989, 36: 339350.
[15] Echtermeyer A. T., Engh B., Buene L.. Lifetime and young’s modulus changes of glass/phenolic and glass/polyster composite under fatigue[J]. Composites, 1995, 26(1): 1016.
[16] 程光旭,韦玮,李光哲.复合材料疲劳损伤演化的两阶段模型[J].机械工程材料,2000, 24(5): 13.
[17] 罗祖道,王震鸣.复合材料力学进展[M].北京大学出版社,1992. |