玻璃钢/复合材料 ›› 2010, Vol. 210 ›› Issue (1): 73-76.

• 产品 工艺 • 上一篇    下一篇

玻璃钢拉挤工艺过程非稳态温度场与固化度数值模拟与试验

谢怀勤1,陈幸开1,梁钒2   

  1. (1.哈尔滨工业大学材料科学与工程学院,哈尔滨 150001; 2. 哈尔滨玻璃钢研究院, 哈尔滨 150036)
  • 出版日期:2010-01-28 发布日期:2010-01-28
  • 作者简介:谢怀勤,男,教授,博士生导师,主要从事聚合物基复合材料的研究。
  • 基金资助:

    黑龙江省自然科学基金项目(E01-10)

Simulation of unsteady temperature field and degree of cure for GFRP pultrusion and experiments

  • Online:2010-01-28 Published:2010-01-28

摘要:

玻璃钢拉挤成型过程中其固化度和温度变化为强耦合关系。根据固化动力学和传热学理论,建立了非稳态温度场与固化动力学数学模型。通过示差扫描量热实验计算出模型中固化动力学参数。采用有限元与有限差分相结合的方法,依据ANSYS求解耦合场的间接耦合法,编制了计算程序,对拉挤工艺不同工况玻璃钢非稳态温度场和固化度进行数值模拟。采用特殊设计制作的铝毛细管封装的布拉格光栅光纤传感器,屏蔽了荷载效应应变干扰,对玻璃钢温度场进行实时检测;采用索氏萃取实验测定玻璃钢制品固化度。实验表明,模拟与实验结果基本吻合。为避开繁多试凑性实验而进行工艺过程优化提供理论依据。

关键词: 玻璃钢, 拉挤工艺, 数值模拟, 非稳态温度场, 布拉格光栅光纤传感器

Abstract:

The temperature and degree of cure of glass fiber reinforced plastic (GFRP) are coupled during the pultrusion process. The unsteady temperature field and curing models were established on the basis of heat transferring and resin curing mechanism. The kinetic parameters of polymer matrix used for simulation were acquired from the differential scanning calorimeter scans. The finite element method and finite difference method were implemented to solve the coupling problem between temperature field and curing models; and the numerical simulation of temperature and degree of cure of GFRP was realized on the basis of ANSYS. The fiber Bragg grating sensor, encapsulated in a metal capillary, was adopted to monitor the centerline temperature of GFRP; and the final degree of cure was measured by Sorbitic extraction. It shows that the simulative results are in good agreement with the experimental ones. The simulative way will make the process optimization more feasible and convenient.

Key words:

text-indent: -48.35pt, mso-outline-level: 1, mso-char-indent-count: -5.37">glass fiber reinforced plastic, pultrusion, numerical simulation, unsteady temperature field, fiber Bragg grating sensor

中图分类号: