[1] 董永琪. 夹芯结构的新进展[J]. 玻璃钢/复合材料,1997,(3):30-32. [2] 马世勇,刘洪军. 玻璃钢夹芯材料的应用[J]. 玻璃钢/复合材料,2001,(4):53-55. [3] F.E.Sezgin, M. Tanog Lu. Mechanical behavior of polypropylene-based honeycomb-core composite sandwich structures[J]. Journal of reinforced plastics and composites, 2010, 29(10): 121-125. [4] Nicolas J. Lombardi, Judy Liu. Glass fiber-reinforced polymer/steel hybrid honeycomb sandwich concept for bridge deck applications[J]. Composite Structures, 2011, 93: 1275-1283. [5] 冯消冰,王伟. 2MW风机复合材料叶片材料及工艺研究[J]. 玻璃钢/复合材料,2010,(7):84-88. [6] Sokolinsky V S, Shen Hongbin, Lev V, et al. Experimental and analytical study of nonlinear bending response of sandwich beams[J].Composite Structure,2003,60:219-229. [7] 李真,周化刚,薛元德. 剪切对泡沫夹层结构梁弯曲性能的影响[J]. 玻璃钢/复合材料,2011,(2):19-23. [8] 季铁正, 蓝立文, 王宝山. 蜂窝夹心板的结构与应用[J]. 新型建筑材料, 1995,(2):31-33. [9] 夏利娟,金咸定,汪庠宝. 卫星结构蜂窝夹层板的等效计算[J]. 上海交通大学学报,2003:999-1001. [10] Ullmann T, Aoki R, Schmidt T. Lock-in thermography for process integrated non-destructive evaluation of carbon fibers reinforced aircraft structures[C]. 10th International Conference on QIRT, 2010. [11] 赵祖虎. 蜂窝夹层结构的修补[J]. 航天返回与遥感,1994, 3(15): 63-67. [12] 曲亚林,宁宁,詹绍正. 蜂窝夹芯结构的无损检测技术[J]. 航空制造技术, 2011, (20): 78-81. [13] 翟光,杨小平. 多夹心层蜂窝板动力学特性分析与仿真[J]. 计算机仿真, 2006,8(23): 44-45. [14] 朱翔. 复合材料蜂窝夹层结构总体稳定性分析的有限元法[J]. 洪都科技,2010: 17-22. [15] 梁月华,韦娟芳. 蜂窝夹层结构镶嵌件拉伸承载力分析[J]. 空间电子技术, 2012: (1), 35-38. [16] Avery J L, Sonkar B V. Compressive failure of sandwich beams with debonded face-sheets[J]. Journal of Composite Materials, 2000,34(14):1176-1199. [17] 沃西源,夏英伟,涂彬. 蜂窝夹层结构复合材料特性及破坏模式分析[J]. 航天返回与遥感,2005,4(26):45-49. [18] Tomblin J S, Salah L, Welch J M, et al. Bonded repair of aircraft composite sandwich structures, DOT/FAA/AR-03/74[R]. US Department of Transportation Federal Aviation Administration,2004. [19] 许潮华,张小珍,宋桂枝. “Nomex”蜂窝芯材的研制和应用[J]. 玻璃钢/复合材料,1986,(2):22-24. [20] 孙春芳,李文晓,薛元德,等. 高速列车用PMI泡沫力学性能研究[J]. 玻璃钢/复合材料,2006,(4):13-15. [21] 汤超,乔玉炜. PMI泡沫夹层结构梁弯曲性能的影响[J]. 玻璃钢/复合材料,2011,(2):19-23. |