[1] 王静. 三维机织热塑性复合材料的拉伸性能测试与分析[J]. 玻璃钢/复合材料, 2005,(3). [2] 王静. 三维机织热塑性复合材料新工艺的开发[J]. 玻璃钢/复合材料, 2005,(5). [3] Baucom J, Zikry M. Evolution of failure mechanisms in 2D and 3D woven composite systems under quasi-static perforation[J]. Journal of composite materials, 2003, 37(18): 1651-1674. [4] SV Lomov, AE Bogdanovich et al. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 1: Materials, methods and principal results[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(8): 1134-1143. [5] DS Ivanov, SV Lomov, AE Bogdanovich et al. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 2: Comprehensive experimental results[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(8): 1144-1157. [6] Yanjun C, Guiqiong J, Bo W, Wei L. Elastic behavior analysis of 3D angle-interlock woven ceramic composites[J]. Acta Mechanica Solida Sinica, 2006, 19(2): 152-159. [7] KH Tsai, CH Chiu, TH Wu. Fatigue behavior of 3D multi-layer angle interlock woven composite plates[J]. Composites science and technology, 2000, 60(2): 241-248. [8] 杨彩云, 李嘉禄. 三维机织复合材料纤维体积含量计算方法[J]. 固体火箭技术, 2005, 28(3). [9] 杨彩云, 李嘉禄. 基于纱线真实形态的三维机织复合材料细观结构及其厚度计算[J]. 复合材料学报, 2005, 22(6): 178-182. [10] 杨彩云, 李嘉禄. 三维机织复合材料力学性能的各向异性[J]. 复合材料学报, 2006, 23(2): 59-64. [11] Carvelli V, et al. Fatigue behavior of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass reinforced composites[J]. Composites science and technology, 2010, 70(14): 2068-2076. [12] LM Jin, BZ Sun, BH Gu. Cumulative fatigue damage for 3-D angle-interlock woven composite under three-point bending cyclic loading[J]. International Journal of Damage Mechanics, 2013, 22(1): 3-16. [13] 孙中涛, 王华明. 旋翼复合材料桨叶弹损穿孔的有限元建模方法[J]. 玻璃钢/复合材料, 2013, (1): 40-43. [14] 罗翔鹏, 段成红, 吴祥等. 复合材料螺旋缠绕圆筒壳轴向压缩性能有限元分析[J]. 玻璃钢/复合材料, 2012, (5): 30-32. [15] 张明星. 胶接碳纤维复合材料层合板拉伸性能及有限元模拟[J]. 玻璃钢/复合材料, 2012, (4): 009. |