[1] 萨昊两,李成良,余启明等.风电叶片疲劳试验振动分析与研究[J].玻璃钢/复合材料,2013,(2): 57-59. [2] 徐阳,刘卫生,乔光辉.兆瓦级大型风力发电机叶片的无损检测[J].玻璃钢/复合材料,2013,(3): 76-79. [3] Chotard T J.New applications of acousticemisssion technique for real-time monitoring of material processes[J].Journal of Material ScienceLetters, 2002,(21):1261-1266. [4] 邓宗白,单珂.风机叶片复合材料裂纹损伤的声发射实验研究[J].机械与电子,2013,(3):13-17. [5] 葛邦,杨涛,高殿斌等.复合材料无损检测技术研究进展[J].玻璃钢/复合材料,2009,(6):67-71. [6] Doutton A G,Blanch M.Acoustic emission monito-ring from wind turbine blades undergoing satic dynamic fatigue testing[J].Insight,2000,42(12):805-808. [7] Bent F S,Lars L,Peter S,et al.Fundamentals for remote structural health montioring of wind turbine blades-A preproject[R].Roskilde:Riso National Laboratory,2002. [8] Goutham R K,Vishal S,Mark J S,et al. Montioring multisite damage growth during quasi-satic testing of a wind turbine blades using a structural neura system[J].Structural Health Montioring,2008,7(2):157-173. [9] 韩敬宇.基于声发射技术的风电叶片裂纹无线 监测系统研究[D].北京:北京化工大学,2010. [10] 朱永凯,潘仁前,陈盛粟.基于声发射传感器阵列的风机叶片结构监测方法[J].无损检测,2010, 32(10):753-761. [11] Newland D E.Harmonic wavelet analysis[J]. Soc .Land:A,1993,443:203-225. [12] 高强,何正嘉.谐波小波及其时频剖面图在旋转机械诊断中的应用[J].西安交通大学学报, 2000,34(9):62-66. [13] 章克来,朱海明.微弱信号检测技术[J].航空电子技术,2009,40(2):30-35. [14] 贾伟广,胡丹,车畅.基于小波分析和支持向量机的刀具故障诊断[J].组合机床与自动化加工技术,2010,(12): 65-68. [15] Yu Jintao,Ding Mingli,Meng Fangang,etal.Acou-stic emission source identification based on har-monic wavelet packet and support vectormachine [J].Journal of Southeast University,2011,27(3):300-304. |