[1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, (01): 1-12. [2] 王涛, 赵宇新, 付书红, 张勇,等. 连续纤维增强金属基复合材料的研制进展及关键问题[J]. 航空材料学报, 2013, (02): 87-96. [3] 梅端, 王钧, 李君明, 司洪效. 玻璃纤维增强树脂基复合材料拉-拉疲劳行为研究[J]. 玻璃钢/复合材料, 2013, (02): 39-42. [4] 武玉芬, 张博明. 碳纤维拉伸强度的离散性分析[J]. 玻璃钢/复合材料, 2010, (03): 29-31. [5] 杜善义, 王彪. 复合材料细观力学[M]. 北京: 科学出版社, 1998. [6] 曾庆敦. 复合材料的细观破坏与强度[M]. 北京: 科学出版社, 2002. [7] 李玮, 段成红, 吴祥. 碳纤维复合材料强度的有限元模拟[J]. 玻璃钢/复合材料, 2011, (01): 20-23. [8] Cox H L. The elasticity and strength of paper and other fibrous materials[J]. British Journal of Applied Physics, 1952, (3): 87-96. [9] Hedgepeth J M, Van P. Local stress concentration in imperfect filamentary composite materials[J]. J Comp Mater, 1967, (1): 294-304. [10] Fukunaga H, Chou T W, Fukuda H. Probabilistic strength analyses of Interlaminated hybrid composites[J]. Composites Science and Technology, 1989, 35(4): 333-345. [11] Ochiai S, Hojo M. Stress disturbances arising from cut fiber and matrix in unidirectional metal matrix composites calculated by means of a modified shear-lag analysis[J]. Journal of Materials Science, 1996, 31(14): 3861-3869. [12] Ohno N, Okabe S, Okabe T. Stress concentrations near a fiber break in unidirectional composites with interfacial slip and matrix yielding[J]. Int J Solids Struct, 2004, 41(16-17): 4263-4277. [13] 曾庆敦, 范赋群. 具有纤维损伤的单向复合材料强度的统计分析[J]. 华南理工大学学报(自然科学版), 1995, (04): 29-35. [14] 范赋群, 曾庆敦. 单向纤维增强复合材料的随机扩大临界核理论[J]. 中国科学(A辑 数学 物理学 天文学 技术科学), 1994, (02): 209-217. [15] Coleman B D. On the strength of classical fibers and fiber bundle[J]. Journal of the Mechanics and Physics of solids, 1958, 7(1): 60-70. [16] Zweben C, Rosen W. A statistical theory of material strength with Application to composite materials[J]. Journal of the Mechanics and Physics of Solids, 1970, 18(3): 189-206. [17] 罗祖道, 王震鸣. 复合材料力学进展[M]. 北京: 北京大学出版社, 1992. [18] Abedian A, Mondali M, Pahlavanpour M. Basic modifications in 3D micromechanical modeling of short fiber composites with bonded and debonded fiber end[J]. Comput Mater Sci., 2007, 40(3): 421-433. [19] Fukuda H, Kawata K. On the strength distribution of unidirectional fiber composites[J]. Fiber Science and Technology, 1977, 10(1): 53-63. [20] Jiang G L, Peters K. A shear-lag model for three-dimensional, unidirectional multilayered structures[J]. Int J Solids Struct., 2008, 45(14-15): 4049-4067. [21] Manders P W, Bader M G, Chou T W. Monte Carlo simulation of the strength of composite fiber bundles[J]. Fiber Science and Technology, 1982, 17(3): 183-204. [22] Okabe T, Takeda N. Elastoplastic shear-lag analysis of single-fiber composites and strength prediction of unidirectional multi-fiber composites[J]. Compos Pt A-Appl Sci Manuf., 2002, 33(10): 1327-1335. [23] 孙开俊, 顾伯勤, 周剑锋, 黄星路. 单向短纤维增强复合材料应力传递模型及其细观力学分析[J]. 材料导报, 2011, (18): 121-124. [24] 王依兵, 张铮, 苏飞. 复合材料模量细观分析的一般性模型[J]. 力学与实践, 2013, (02): 73-76. [25] Daniels H E. The statistical theory of the strength of bundles of threads[J]. Proceedings of the Royal Society of London, 1945, 183(A995): 405-435. [26] Kun F, Zapperi S, Herrmann H J. Damage in fiber bundle models[J]. Eur Phys J B, 2000, 17(2): 269-279. [27] Hidalgo R C, Moreno Y, Kun F, Herrmann H J. Fracture model with variable range of interaction[J]. Physical Review E, 2002, 65(4). [28] Raischel F, Kun F, Herrmann H J. Failure process of a bundle of plastic fibers[J]. Physical Review E, 2006, 73(6): 066101. [29] Aveston J, Cooper G A, Kelly A. Single and multiple fracture[M]. Surrey: IPC Science and Technology Press, 1971. [30] Budiansky B, Hutchinson J W, Evans A G. Matrix fracture in fiber-reinforced ceramics[J]. Journal of the Mechanics and Physics of Solids, 1986, 34(2): 167-189. [31] Marshall D B, Cox B N. Tensile properties of brittle matrix composites: influence of fiber strength[J]. Acta Metallurgica et Materialia, 1987, 35: 2607-2619. [32] Marshall D B, Cox B N, Evans A G. The mechanics of matrix cracking in brittle-matrix fiber composites[J]. Acta Metallurgica et Materialia, 1985, 33: 2013-2021. [33] Mishnaevsky L. Composite materials for wind energy applications: micromechanical modeling and future directions[J]. Computational Mechanics, 2012, 50(2): 195-207. [34] Mishnaevsky L, Brondsted P. Micromechanical modeling of damage and fracture of unidirectional fiber reinforced composites: A review[J]. Comput Mater Sci., 2009, 44(4): 1351-1359. [35] Pagano N J, Kim R Y. Progressive microcracking in unidirectional brittle matrix composites[J]. Mechanics of Composite Materials and Structures, 1994, (1):3-29. [36] Zok F W, Begley M R, Steyer T E, Walls D P. Inelastic deformation of fiber composites containing bridged cracks[J]. Mechanics of Materials, 1997, 26(2): 81-92. [37] Hassan N M, Batra R C. Modeling damage in polymeric composites[J]. Composites Part B-Engineering, 2008, 39(1): 66-82. [38] Raghavan P, Ghosh S. A continuum damage mechanics model for unidirectional composites undergoing interfacial debonding[J]. Mechanics of Materials, 2005, 37(9): 955-979. [39] Mishnaevsky L. Computational mesomechanics of composites: numerical analysis of the effect of microstructures of composites on their strength and damage resistance[M]. West Sussex: John Wiley & Sons Ltd, 2007. [40] Bonora N, Ruggiero A. Micromechanical modeling of composites with mechanical interface-Part II: Damage mechanics assessment[J]. Composites Science and Technology, 2006, 66(2): 323-332. [41] Trias D, Costa J, Mayugo J A, Hurtado J E. Random models versus periodic models for fibre reinforced composites[J]. Comput Mater Sci., 2006, 38(2): 316-324. [42] Vejen N, Pyrz R. Transverse crack growth in glass/epoxy composites with exactly positioned long fibres. Part II: numerical[J]. Composites Part B-Engineering, 2002, 33(4): 279-290. [43] Zhang Y F, Xia Z H, Ellyin F. Nonlinear viscoelastic micromechanical analysis of fibre-reinforced polymer laminates with damage evolution[J]. Int J Solids Struct, 2005, 42(2): 591-604. [44] Gonzalez C, Llorca J. Multiscale modeling of fracture in fiber-reinforced composites[J]. Acta Mater, 2006, 54(16): 4171-4181. [45] Mishnalevsky L, Brondsted P. Micromechanisms of damage in unidirectional fiber reinforced composites: 3D computational analysis[J]. Composites Science and Technology, 2009, 69(7-8): 1036-1044. |