[1] 陈绍杰. 复合材料技术与大型飞机[J]. 航空学报, 2008, 29(3): 605-610. [2] 曹春晓. 一代材料技术, 一代大型飞机[J]. 航空学报, 2008, 29(3): 701-706. [3] 王兴刚, 于洋, 李树茂, 等. 先进热塑性树脂基复合材料在航天航空上的应用[J]. 纤维复合材料, 2011, (2): 44-47. [4] Deo R B, Starnes J H, Holzwarth R C. Low-cost composite materials and structures for aircraft applications[C]Norway: NATO RTO AVT Panel spring symposium and specialists' meeting Loen, 2001. [5] Hinrichsen J, Bautista C. The challenge of reducing both airframe weight and manufacturing cost[J]. Air & Space Europe, 2001, 3(3): 119-121. [6] 张佐光,李敏,陈绍杰. 飞机结构用先进复合材料的应用与发展[C]. 第十四届全国复合材料学术会议论文集. 2006: 28-34. [7] 姚俊, 孙达, 姚振强, 等. 复合材料自动铺带技术现状与研究进展[J]. 机械设计与研究, 2011, 27(4): 60-65. [8] Marsh G. Automating aerospace composites production with fiber placement[J]. Reinforced Plastics, 2011, 55(3): 32-37. [9] Bruce M. Automating Composites Fabrication to Meet IncreasedThroughut Required by Industries Ranging from AerospacetoWind Energy, Automation Speeds Composite Production [J].Manufacturing Engineering, 2008, 140 (4). [10] Bond G G, Griffith J M, Hahn G L, et al. Non-Autoclave (Prepreg) Manufacturing Technology[R]. BOEING CO SEATTLE WA PHANTOM WORKS, 2008. [11] Sutter J K, Kenner W S, Pelham L, et al. Comparison of autoclave and out-of-autoclave composites[C]Proceedings 42nd international SAMPE symposium and technical conference. 2010. [12] Schwartz M. Innovations in materials manufacturing, fabrication, and environmental safety[M]. CRC press, 2010. 507-508. [13] Kaps R, Herbeck L, Herrmann A. Hybrid fabrication route-cost efficient CFRP primary airframe structures[C]ICAS 2006, 25th international congress of the aeronautical sciences. 2006. [14] Aoki Y, Nagao Y, Takeda SI, Kuratani Y. Integral fabrication of composite fuselage structure using VARTMprepreg hybrid process[C]. SAMPE Europe 32nd International Technical Conference, 2011, Paris. [15] Di Fratta C, Danzi M, Gabathuler V, et al. Approach to Optimizing a Combined Out-of-Autoclave(OOA) Prepreg/Liquid Composite Molding(LCM) Process for Integrated Structures[J]. SAMPE Journal, 2012, 48(5): 40-46. [16] Xu W, Gu Y, Li M, et al. Co-curing process combining resin film infusion with prepreg and co-cured interlaminar properties of carbon fiber composites[J]. Journal of Composite Materials, 2013, 48(14): 1709-1724. [17] Ma X Q, Gu Y Z, Li M, et al. Properties of carbon fiber composite laminates fabricated by coresin film infusion process for different prepregmaterials[J]. Polymer Composites, 2013, 34(12): 2008-2018. [18] Ma X, Gu Y, et al. Manufacture and characterization of carbon fiber composite stiffened skin by resin film infusion/prepreg co-curing process[J]. Journal of Reinforced Plastics and Composites, 2014: 0731684414543213. [19] Delaloye S, Niedermeier M. Optimization of the diaphragm forming process for continuous fibre-reinforced advanced thermoplastic composites[J]. Composites Manufacturing, 1995, 6(3): 135-144. [20] Pantelakis S G, Baxevani E A. Optimization of the diaphragm forming process with regard to product quality and cost[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(4): 459-470. [21] Yu X., Ye L., Mai Y.W., et al. Finite element simulations of the double diaphragmforming process[J]. Revue Européenne des léments, 2005, 14(6-7): 633-651. [22] Sun J, Gu Y, Li M, et al. Effect of forming temperature on the quality of hot diaphragm formed C-shaped thermosetting composite laminates[J]. Journal of Reinforced Plastics and Composites, 2012, 31(16): 1074-1087. [23] Bian X X, Gu Y Z, Sun J, et al. Effects of processing parameters on the forming quality of c-shaped thermosetting composite laminates in hot diaphragm forming process[J]. Applied Composite Materials, 2013, 20(5): 927-945. [24] 马保全,周正干. 航空航天复合材料结构非接触无损检测技术的进展及发展趋势[J].航空学报, 2014. [25] Palmer S B, Dixon S. Industrially viable non-contact ultrasound[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2003, 45(3): 211-217. [26] Ryley A C, Kharkovsky S, Daniels D, et al. Comparison of X-ray, millimeter wave, shearography and through-transmission ultrasonic methods for inspection of honeycomb composites[C]AIP Conference proceedings, American Institute of Physics, 2007. [27] Hillger W, Meier R, Henrich R. Inspection of CFRP components by ultrasonic imaging with air-coupling[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2004, 46(3): 147-150. [28] Holland S D, Uhl C, Renshaw J. Vibrothermographic crack heating: A function of vibration and crack size[C]Review of Progress in Quantitative Nondestructive Evaluation: Proceedings of the 35th Annual Review of Progress in Quantitative Nondestructive Evaluation. AIP Publishing, 2009, 1096(1): 489-494. [29] Farge L, Varna J, Ayadi Z. Damage characterization of a cross-ply carbon fiber/epoxy laminate by an optical measurement of the displacement field[J]. Composites Science and technology, 2010, 70(1): 94-101. [30] Ambu R, Aymerich F, Ginesu F, et al. Assessment of NDT interferometric techniques for impact damage detection in composite laminates[J]. Composites Science and Technology, 2006, 66(2): 199-205. [31] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(7): 56-58. [32] Li Q, Zhang X, DePaula R F, et al. Sustained growth of ultralong carbon nanotube arrays for fiber spinning[J]. Advanced Materials, 2006, 18: 3160-3163. [33] Liu Y N, Li M, Gu Y, et al. The interfacial strength and fracture characteristics of ethanol and polymer modified carbon nanotube fibers in their epoxy composites[J]. Carbon, 2013, 52: 550-558. [34] Liu Y N, Li M, Gu Y, et al. A modified spray-winding approach to enhance the tensile performance of array-based carbon nanotube composite films[J]. Carbon, 2013, 65: 187-195. [35] Zhang M, Atkinson K R, Baughman R H. Multifunctional carbon nanotube yarns by downsizing an ancient technology[J]. Science, 2004, 306(5700): 1358-1361. [36] Jia J, Zhao J, Xu G, et al. A comparison of the mechanical properties of fibers spun from different carbon nano-tubes[J]. Carbon, 2011, 49(4): 1333-1339. [37] Zhang M, Fang S, Zakhidov A.A, et al. Strong, transpa-rent, multifunctional, carbon nanotube sheets [J]. Science, 2005, 309 (5738): 1215-1219. [38] Liu Q, Li M, Gu Y, et al. Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing [J]. Nanoscale, 2014, 6(8):4338-4344. [39] Cheng Q F, Bao J W, Park J G, et al. High gechanical performance composite conductor: multi-walled carbon nanotube sheet/bismaleimidenanocomposites[J]. Advanced Functional Materials, 2009, 19(20):3219-3225. [40] Cheng Q, Wang B, Zhang C, Liang Z. Functionalized carbon-nanotube sheet/bismaleimidenanocomposites: Mechanical and electrical performance beyond carbon-fiber composites[J]. Small, 2010, 6(6): 763-767. [41] LeGault M R. Near commercialization: CNT yarn, tape and sheet [EB/OL](2012-01-02)[2014-07-29]. http://www. compositesworld.com/articles/near-commercialization-cnt-yarn-tape-and-sheet. [42] Park J, Louis J, Cheng Q, et al. Electromagnetic interfe-rence shielding properties of carbon nanotube buckypa-per composites[J]. Nanotechnology, 2009, 20(41):415702. [43] Li M, Gu Y, Liu Y, et al. Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers[J]. Carbon, 2013, 52: 109-121. [44] Gao L, Thostenson E T, Zhang Z, et al. Sensing of Damage Mechanisms in Fiber‐Reinforced Composites under Cyclic Loading using Carbon Nanotubes[J]. Advanced Functional Materials, 2009, 19(1): 123-130. [45] Gao L, Chou T W, Thostenson E T, et al. A comparative study of damage sensing in fiber composites using uniformly and non-uniformly dispersed carbon nanotubes[J]. Carbon, 2010, 48(13): 3788-3794. |