[1] 陈详宝. 先进复合材料低成本制造技术 [M]. 北京:化学工业出版社,2004.
[2] http://www.velocite-bikes.com/carbon-fiber.html.
[3] Zeng T, Wu L, Guo L. Mechanical Analysis of 3D Braided Composites: A Finite Element Model[J]. Composite Structures, 2004, 64: 399-404.
[4] Mahmood A, Wang X, Zhou C. Modeling Strategies of 3D Woven Composites: A Review[J]. Composite Structures, 2011, 93: 1947-1963.
[5] Fang G, Liang J, Wang B. Progressive Damage and Nonlinear Analysis of 3D Four-directional Braided Composites Under Unidirectional Tension[J]. Composite Structures, 2009, 89: 126-133.
[6] Fang G, Liang J, Lu Q, et al. Investigation on the Compressive Properties of the Three Dimensional Four-directional Braided Composites[J]. Composite Structures, 2011, 93: 392-405.
[7] Harris C E, Starnes J H, Shuart M J. An Assessment of the State-of-the-art in the Design and Manufacturing of Large Composite Structures for Aerospace Vehicles[Z]. NASA TM-2001-210844.
[8] Byrne M T, Gun'ko Y K. Recent Advances in Research on Carbon Nanotube–Polymer Composites[J]. Advanced Materials, 2010, 22(15): 1672-1688.
[9] Thostenson E T, Ren Z, Chou T W. Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review[J]. Composites Science and Technology, 2001, 61(13): 1899-1912.
[10] Chou T W, McCullough R L, Pipes R B. Composites[J]. Scientific American, 1986, 254: 193-203.
[11] Li C Y, Chou T W. Multiscale Modeling of Carbon Nanotube Reinforced Polymer Composites[J]. Journal of Nanoscience and Nanotechnology, 2003, 3(5): 423-430.
[12] Frehill F, Vos J G, Benrezzak S, et al. Interconnecting Carbon Nanotubes with an Inorganic Metal Complex[J]. Journal of the American Chemical Society, 2002, 124(46): 13694-13695.
[13] Zhang J, Jiang D. Interconnected Multi-walled Carbon Nanotubes Reinforced Polymer-matrix Composites[J]. Composites Science and Technology, 2011, 71(4): 466-470.
[14] Zhang J, Ju S, Jiang D, et al. Reducing Dispersity of Mechanical Properties of Carbon Fiber/Epoxy Composites by Introducing Multi-walled Carbon Nanotubes[J]. Composites Part B, 2013, 54: 371-376.
[15] Reddy A D. Behavior of Continuous Filament Advanced Composite Isogrid Structure[D]. Altanta, US: Georgia Institute of Technology, 1980: 1-2.
[16] 范华林, 杨卫. 轻质高强点阵材料及其力学性能研究进展[J]. 力学进展, 2007, 37(1): 99-112.
[17] 余同希. 关于“多胞材料”和“点阵材料”的一点意见[J]. 力学与实践, 2005, 27(3): 90.
[18] Fan H L, Jin F N, Fang D N. Uniaxial Local Buckling Strength of Periodic Lattice Composites[J]. Materials and Design, 2009, 30: 4136-4145.
[19] 范华林, 孟凡颢, 杨卫. 碳纤维格栅结构力学性能研究[J]. 工程力学, 2007, 24(5): 42-46.
[20] Hou A, Gramoll K. Compressive Strength of Composite Lattice Structures[J]. Journal of Reinforced Plastics and Composites, 1998, 17(5): 462-483.
[21] Vasiliev V V, Barynin V A, Rasin A F. Anisogrid Lattice Structures-Survey of Development and Application[J]. Composite Structrues, 2001, 54: 361-370.
[22] Kidane S. Buckling Analysis of Grid Stiffened Composite Structures[D]. Louisiana, US: Louisiana State University, 2002.
[23] Fan H L, Meng F H, Yang W. Sandwich Panels with Kagome Lattice Cores Reinforced by Carbon Fibers[J]. Composite Structures, 2007, 81: 533-539.
[24] Tsai S W, Liu K S, Manne P M. Manufacture and Design of Composite Grids[J]. Materials de Construction, 1997, 47(247/248): 59-71.
[25] Kim T D. Fabrication and Testing of Composite Isogrid Stiffened Cylinder[J]. Composite Structures, 1999, 45: 1-6.
[26] Kim T D. Fabrication and Testing of Thin Composite Isogrid Stiffened Panel[J]. Composite Structures, 2000, 49: 21-25.
[27] Huybrechts S M, Meink T E, Wegner P M, et al. Manufacturing Theory for Advanced Grid Stiffened Structures[J]. Composite: Part A, 2002, 33: 155-161.
[28] Vailiev V V, Razin A F. Anisogrid Composite Lattice Structures for Spacecraft and Aircraft Applications[J]. Composite Structrues, 2006, 76: 182-189.
[29] Hohe J, Beschorner C, Becker W. Effective Elastic Properties of Hexagonal Quadrilateral Grid Structures[J]. Composite Structures, 1999, 46: 73-89.
[30] Han D Y, Tsai S W. Interlocked Composite Grids Design and Manufacturing[J]. Journal of Composite Materials, 2003, 37(4): 287-316.
[31] Hicks M T. Design of a Carbon Fiber Composite Grid Structure for the GLAST Spacecraft Using a Novel Manufacturing Technique[D]. Stanford, US: Stanford University, 2001.
[32] Colwell T B. The Manufacturing and Application of Composite Grid structure[D]. Stanford, US: Stanford University, 1996.
[33] Chen H J, Tsai S W. Analysis and Optimum Design of Composite Grid Structures[J]. Journal of Composite Materials, 1996, 30(4): 503-534.
[34] Wodesenbet E, Kidane S, Pang S S. Optimization for Buckling Loads of Grid Stiffened Composite Panels[J]. Composite Structures, 2003, 60: 159-169.
[35] Jadhav P, Mantena P R. Parametric Optimization of Grid-Stiffened Composite Panels for Maximizing their Performance under Transverse Loading[J]. Composite Structures, 2007, 77: 353-363.
[36] Akl W, El-Sabbagh A, Baz A. Optimizaiton of the Static and Dynamic Characteristic of Plates with Isogrid Stiffeners[J]. Finite Elements in Analysis and Design, 2008, 44: 513-523.
[37] Chen Y, Gibson R F. Analytical and Experimental Studies of Composite Isogrid Structures with Integral Passive Damping[J]. Mechanics of Advanced Materials and Structures, 2003, 10: 127-143.
[38] Maricherla D. Advanced Grid Stiffened Composite Structures[D]. Louisiana, US: Louisiana State University, 2005.
[39] Sekine H, Atobe S. Identificaiton of Locations and Force Histories of Multiple Point Impacts on Composite Isogrid-Stiffened Panels[J]. Composite Structures, 2009, 89: 1-7.
[40] Slinchenko D, Verijenko V E. Structural Analysis of Composite Lattice Shells of Revolution on the Basis of Smearting Stiffness[J]. Composite Structures, 2001, 54: 341-348.
[41] 周涛. 二维网格复合材料点阵结构及其刚度与强度分析[D]. 长沙: 国防科学技术大学, 2007.
[42] 张昌天. 二维点阵复合材料结构的制备与性能[D]. 长沙: 国防科学技术大学, 2008.
[43] Zhang B M, Zhang J F, Wu Z J, et al. A Load Reconstruction Model for Advanced Grid-Stiffened Composite Plates[J]. Composite Structures, 2008, 82: 600-608.
[44] 章继峰, 张博明, 杜善义. 平板型复合材料格栅结构的增强改进与参数设计[J]. 复合材料学报, 2006, 23(3): 153-157.
[45] Zhang Z F, Chen H R, Ye L. Progressive Failure Analysis for Advanced Grid Stiffened Composite Plates/Shells[J]. Composite Structures, 2008, 86: 45-54.
[46] 张志峰, 陈浩然, 白瑞祥. 含初始缺陷复合材料格栅加筋圆柱壳的鲁棒优化设计[J]. 固体力学学报, 2006, 27(1): 58-64.
[47] 白瑞祥, 王蔓, 陈浩然. 含损伤复合材料AGS 板的屈曲特性[J]. 复合材料学报, 2005, 22(4): 136-141.
[48] 白瑞祥, 李泽成, 陈浩然. 基于累积失效法的含损伤格栅加筋板非线性屈曲状态分析[J]. 力学季刊, 2006, 27(2): 240-246.
[49] Evans A G. Lightweight Materials and Structures[J]. MRS Bulletin, 2001, 26: 790-797.
[50] Evans A G, Hutchinson J W, Fleck N A, et al. The Topology Design of Multifunctional Cellular Metals[J]. Progress in Materials Science, 2001, 46: 309-327.
[51] Deshpande V S, Ashby M F, Fleck N A. Foam Topology Bending versus Stretching Dominated Architectures[J]. Acta Materilia, 2001, 49: 1035-1040.
[52] 肖加余, 江大志, 曾竟成. 超轻质点阵复合材料结构研究进展[C]. 张家界: 中国航天第十三专业信息网2008年技术交流会论文集, 2008: 7-12.
[53] Fan H L, Yang W, Wang B, et al. Design and Manufacturing of a Composite Lattice Structure Reinforced by Continuous Carbon Fibers[J]. Tsinghua Science and Technology, 2006, 11(5): 515-522.
[54] 范华林, 杨卫, 方岱宁, 等. 新型碳纤维点阵复合材料技术研究[J]. 航空材料学报, 2007, 27(1): 46-50.
[55] Darooka D K, Jensen D W. Advanced Space Structure Concepts and Their Development[R]. American Institute of Aeronautics and Astronautics, AIAA-2001-1257, 2001: 1-10.
[56] IsoTruss Structure, Inc. Technical Overview of IsoTrussTM Technology[R]. Technical Report from IsoTruss Structure Company, 2002: 10-11.
[57] McCune D T. Manufacturing Quality of Carbon/Epoxy IsoTruss© Reinforced Concrete Structures[D]. Provo, US: Brigham Young University, 2005: 2-3.
[58] http://www.isotruss.org/index.htm, 2004-10-28/2010-12-23.
[59] Maneepan K. Genetic Algorithm Based Optimization of FRP Composite Plates in Ship Structures[D]. Southampton, UK: University of Southampton, 2007: 23-27.
[60] Almeida F S, Awruch A M. Design Optimization of Composite Laminated Structures using Genetic Algorithm and Finite Element Analysis[J]. Composite Structures, 2009, 88: 443-454.
[61] Amago T. Sizing Optimization Using Response Surface Method in FOA[R]. R&D Review of Toyota CRDL, 2002, 37(1): 1-7.
[62] Khuri A I, Cornell J A. Response Surfaces: Design and Analyses[M]. New York, US: Marcel Dekker, Inc., 1996.
[63] Carley K M, Kamneva N Y, Reminga J. Response Surface Methodology[R]. Pittsburgh, US: Carnegie Mellon University, 2004.
[64] Jones D R. A Taxonomy of Global Optimization Methods Based on Response Surfaces[J]. Journal of Global Optimization, 2001, 21: 345-383.
[65] Abouhamze M, Shakeri M. Multi-Objective Stacking Sequence Optimization of Laminated Cylindrical Panels Using a Genetic Algorithm and Neural Networks[J]. Composite Structures, 2007, 81: 253-263.
[66] Ju S, Shenoi R A, Jiang D, et al. Multi-Parameter Optimization of Lightweight Composite Triangular Truss Structure Based on Response Surface Methodology [J]. Composite Structures, 2013, 97: 107-116.
[67] Hurez A, Akkus N, Verchery G, et al. Design and Analysis of Composite Structures with Interlaced Fibers[J]. Composites, 2001, 32A(10): 1455-1463.
[68] 胡泽. 无人机结构用复合材料及其制造技术综述[J]. 航空制造技术, 2007, (6): 66-70.
[69] Black S. A Grid-Stiffened Alternative to Core Laminates[J]. High Performance Composites, 2002, 3: 48-51.
[70] Rackliffe M E. Development of Ultra-Lightweight IsotrussTM Grid Structures[D]. Provo, US: Brigham Young University, 2002. |