复合材料科学与工程 ›› 2015, Vol. 0 ›› Issue (4): 16-21.

• 基础研究 • 上一篇    下一篇

某无人机复合材料主翼盒准等强度设计与有限元分析

刘峰, 马佳*, 张春, 喻辉   

  1. 中国民用航空飞行学院航空工程学院,四川广汉618307
  • 收稿日期:2014-01-05 出版日期:2015-04-28 发布日期:2021-09-14
  • 通讯作者: 马佳(1988-),男,硕士研究生,主要研究方向为复合材料结构设计与分析。
  • 作者简介:刘峰(1977-),男,博士,教授,主要研究方向为飞机结构与强度、复合材料结构设计与分析。
  • 基金资助:
    国家自然科学基金民航联合基金重点项目(U1233202/F01);民航局科技项目重大专项(MHRD201240);中国民用航空飞行学院成果转化与创新基金项目;国家级大学生创新创业训练项目(201310624034)

QUASI-EQUAL STRENGTH DESIGN AND FINITE ELEMENT ANALYSIS FOR COMPOSITE MAIN WING BOX OF X UAV

LIU Feng, MA Jia*, ZHANG Chun, YU Hui   

  1. Civil Aviation Flight University of China, Guanghan 618307, China
  • Received:2014-01-05 Online:2015-04-28 Published:2021-09-14

摘要: 以某无人机复合材料主翼盒准等强度设计与优化为目标,研究了主翼盒基于载荷分段的包络设计方法与铺层优化方法。采用等步长载荷包络设计方法计算了准等强度翼盒前梁的分布载荷,给出了前、后梁的初步铺层设计。建立了主翼盒的有限元模型,基于有限元分析结果校核了主翼盒的强度、刚度和稳定性。给出了主翼盒前、后梁以及蒙皮的铺层优化方案。研究结果表明,等步长载荷包络设计方法能够方便地计算主翼盒前、后梁的分段载荷;基于经典层合板理论对主翼盒进行铺层的初步设计,并运用有限元软件进行分析与校核,可以快速、有效地完成主翼盒铺层的分段优化设计;大展弦比机翼受最大正过载时,翼根上表面受压缩载荷,前梁上缘条和上蒙皮易发生局部屈曲失稳;减少主翼盒前、后梁下缘条以及下蒙皮铺层数目,可使结构减重达5.23%。

关键词: 无人机, 复合材料, 主翼盒, 优化设计, 有限元

Abstract: A research on load segmentation envelope design and layer optimization method is carried out for quasi-equal strength design and optimization of an unmanned aerial vehicle composite main wing box. The load segmentation distribution of the quasi-equal strength front spar of the main wing box is calculated using load envelope method with constant step. The initial layer structure of the front and rear spar is given. The finite element model of the main wing box is built. The strength, stiffness and stability of the main wing box are checked based on the results of finite element analysis. The optimized layer constructions of the front and rear spars and the skin are presented. It is shown that it is very convenient to calculate the segmented load of the front and rear spar using load segmentation method with constant step. The layer optimization design of the segmented main wing box can be done efficiently based on the initial layer construction design using the classical laminate theory and structure mechanical check by finite element method. Under the compression load caused by maximum positive lift, local buckling occurs easily at the wing root of the upper skin and the front spar’s upper strip, especially for the high-aspect-ratio wing box. The weight of the main wing box can be cut down by 5.23% through reducing the layers of the lower chord of the front and rear spar and the lower skin.

Key words: UAV, composite, main wing box, design optimization, finite element

中图分类号: