[1] Mouritz A. P., Gellert E.. Review of advanced composite structures for naval ships and submarines[J]. Composites Structures, 2001, 53(1): 21-41. [2] Shirk. M. H., Hertz. T. J., Weisshaar T. A.. Aeroelastic Tailoring Theory, Practice and Promise[J]. Journal of Aircraft, 1986, 23(1): 6-18. [3] Lee Ya-Jung, Lin Ching-Chieh. Optimized Design of Composite Propeller[J]. Mechanics of Advanced Materials and Structures, 2004, 11(1): 17-30. [4] Young Y. L.. Fluid-structure interaction analysis of flexible composite marine propellers[J]. Journal of Fluids and Structures, 2008, 24(6): 799-818. [5] Motley M. R., Liu Z., Young Y. L.. Utilizing fluid-structure interactions to improve energy efflciency of composite marine propellers in spatially varying wake[J]. Composite Structures, 2009, 90(3): 304-313. [6] 曾志波, 姚志崇, 王纬波, 等. 复合材料螺旋桨流固耦合分析方法研究[J]. 船舶力学, 2012, 16(5): 477-483. [7] Sun H, Xiong Y. Fluid-Structure Interaction Analysis of Flexible Marine Propellers[J]. Applied Mechanics and Materials, 2012, 226-228:479-482. [8] Lin H., Lin J.. Effect of stacking sequence on the hydroelastic behavior of composite propeller blades[C]. Gold Coast, Australia: Proceedings of the Eleventh International Conference on Composite Materials, Australian Composite Structures Society, 1997. [9] 李泓运, 王纬波, 曾志波. 复合材料螺旋桨的铺层对桨叶强度和干湿模态的影响[C]//第十四届全国船舶水下噪声学术讨论会论文集. 重庆: 2013: 289-296. [10] Liu Zhanke, Young Yin L.. Utilization of bend-twist coupling for performance enhancement of composite marine propellers[J]. Journal of Fluids and Structures, 2009, 25(6):1102-1116. [11] Lin Ching-Chieh. Optimization and experiment of composite marine propellers[J]. Composite Structures, 2009, 89(2): 206-215. [12] 董世汤, 唐登海, 周伟新. CSSRC的螺旋桨定常面元法 [J].船舶力学, 2005, 9(5): 48-62. [13] Dong Shitang,Tang Denghai, Zhou Weixin. Panel method of CSSRC for propeller in steady flows[J]. Journal of Ship Mechanics, 2005, 9(5): 46-60. [14] 陈悦, 朱锡, 周振龙. 考虑铺层的复合材料螺旋桨流固耦合计算及验证[J]. 船海工程, 2014, 43(2): 57-61. [15] 陈悦, 朱锡, 黄振, 等. 水动力载荷下复合材料螺旋桨强度评估[J]. 中国舰船研究, 2015, 10(1): 19-26. |