[1] 陈精明, 敖文亮, 吴晓卫, 等. 甲阶酚醛树脂的合成研究进展[J]. 热固性树脂, 2004, 19(6): 31-34. [2] 胡平, 刘锦霞, 张鸿雁, 等. 酚醛树脂及其复合材料成型工艺的研究进展[J]. 热固性树脂, 2006, 21(1): 36-41. [3] 李柏松, 王继辉, 邓京兰. 真空辅助RTM成型技术的研究[J]. 玻璃钢/复合材料, 2001(1): 17-23. [4] 刘相, 谢凯, 洪晓斌. 利用时温等效原理修正的VARTM用双酚F型环氧树脂体系化学流变模型[J]. 复合材料学报, 2010, 27(1): 1-6. [5] 王芳, 张国利. VARTM用EP体系流变特性及固化工艺的研究[J]. 工程塑料应用, 2006, 34(8): 31-34. [6] Michel B. S. SRM Nozzle Design Breakthroughs with Advanced Composites Materials[ R]. AIAA,2009. [7] Michel B. Snecma Propulsion Solide Advanced Technology SRM Nozzles. History and Future. 42nd Joint Propulsion Conference and Exhibit[C] . AIAA, 2006. [8] Pavel Simacek, er Eksik, Dirk Heider, et al. Experimental validation of post-filling flow in vacuum assisted resintransfer molding processes[J]. Composites: Part A, 2012, 43: 370-380. [9] Gastón Francucci, Analáa V zquez, Edu Ruiz, et al. Capillary Effects in Vacuum-Assisted Resin Transfer Molding With Natural Fibers[J]. Polymer composites, 2012, 9(33): 1593-1602. [10] Vishwanath R. Kedari, Basil I. Farah, Kuang-Ting Hsiao. Effects of vacuum pressure, inlet pressure, and mold temperature on the void and mold temperature on the void content, volume fraction of polyester/e-glass fiber composites manufactured with VARTM process[J]. Journal of Composite Materials, 2011, 45(26):2727-2742. [11] Michel B., Martine D. A New Ablative Material Offering Nozzle Design Breakthroughs[C]. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA, 2011. [12] 石东, 石凤, 段跃新, 等. RTM工艺用酚醛树脂体系化学流变行为研究[J]. 宇航材料工艺, 2005(2): 52-56. [13] 贾智源, 宋秋香, 王海珍, 等. 碳纤维真空灌注成型用环氧树脂的流变特性分析[J]. 玻璃钢/复合材料, 2013(7): 7-10. [14] 路遥, 段跃新, 梁志勇, 等. 钡酚醛树脂体系化学流变特性研究[J]. 复合材料学报, 2002, 5(19): 33-37. [15] Domínguez J.C., Oliet M., Alonso V. M., et al. Rheokinetic of a Gelled Resol Resin Curing by Dynamic-Temperature Rheometry Based on Rectangular Torsion Strain[J]. J Appl Polym Sci., 2012, 124: 5122-5129. [16] Kruckenberg T., Paton R.. 李宏运译. 航空航天复合材料结构件树脂传递模塑成形技术[M]. 北京: 航空工业出版社, 2009. |