[1] Alawar A, Bosze EJ, Nutt S. A composite core conductor for low sag at high temperatures[J]. IEEE Transtions of Power and Deliver, 2005, 20(3): 2193-2199. [2] Barjasteh E, Nutt SR. Moisture absorption of unidirectional hybrid composites[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(1): 158-164. [3] 邓世聪, 刘庭, 李汉明, 等. 110 kV架空输电线路复合材料杆塔的材料、电气和机械特性试验[J]. 南方电网技术, 2011, 5(3): 36-40. [4] 胡毅, 刘庭, 刘凯, 等. 110 kV输电线路复合材料杆塔特性试验研究[J]. 高电压技术, 2011, 37(4): 801-808. [5] 龚靖, 张恩铭, 祁西汉, 等. 新型FRP绝缘电杆结构优化设计[J]. 电工电能新技术, 2014, 33(1): 76-80. [6] Dhakal H, Zhang Z, Richardson M. Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites[J]. Composites Science and Technology, 2007, 67(7): 1674-1683. [7] Bian L, Xiao J, Zeng J, et al. Effects of seawater immersion on water absorption and mechanical properties of GFRP composites[J]. Journal of Composite Materials, 2012, 46(25): 3151-3162. [8] Alomayri T, Assaedi H, Shaikh F, et al. Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites[J]. Journal of Asian Ceramic Societies, 2014, 2(3): 223-230. [9] Meng M, Rizvi MJ, Grove HR, et al. Effect of hygrothermal stress on the failure of cfrp composites[J]. Composite Structures, 2015, 133: 1024-1035. [10] Zafar A, Bertocco F, Schijodt-Thomsen J, et al. Investigation of the long term effects of moisture on carbon fibre and epoxy matrix composites[J]. Composite Structures, 2012, 72(6): 656-666. [11] Alessi S, Pitarresi G, Spadaro G. Effect of hydrothermal ageing on the thermal and delamination fracture behavior of CFRP composites[J]. Composites Part B: Engineering, 2014, 67: 145-153. [12] Grammatikos SA, Evernden M, Mitchels J, et al. On the response to hygrothermal aging of pultruded frps used in the civil engineering sector[J]. Materials and Design, 2016, 96: 283-295. [13] Ellyin F, Maser R. Environmental effects on the mechanical properties of glass-fiber epoxy composite tubular specimens[J]. Composites Science and Technology, 2004, 64(12): 1863-1874. [14] Kawakami H. Lightning strike induced damage mechanisms of carbon fiber composites[D]. University of Washington, 2011. [15] Chemartin L, Lalande P, Peyrou B, et al. Direct effects of lightning on aircraft struture: analysis of the thermal, electrical and mechanical constrains[J]. Journal of Aerospace Lab., 2012, 5(AL05-09): 1-15. [16] Hirano Y, Katsumata S, Iwahor Y, et al. Artificial lightning testing on graphite/epoxy composite laminate[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(10): 1461-1470. [17] Ogasawara T, Hirano Y, Yoshimura A. Coupled thermal-electrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(8): 973-981. [18] 付尚琛, 周颖慧, 石立华, 等. 碳纤维增强复合材料雷击损伤实验及电-热耦合仿真[J]. 复合材料学报, 2015, 32(1): 250-259. [19] 刘志强, 岳珠峰, 王富生, 等. 不同防护形式复合材料板雷击损伤分区特性[J]. 复合材料学报, 2015, 32(1): 284-294. [20] 赵金龙, 陈晓宁, 张云生, 等. 玻璃纤维复合材料雷击破损仿真与试验[J]. 玻璃钢/复合材料, 2015(1): 42-47. [21] 朱健健, 李梦. 航空复合材料结构雷击损伤与雷击防护的研究进展[J]. 材料导报, 2015, 29(9): 37-42. [22] Li Y, Li R, Lu L, et al. Experimental study of damage characteristics of carbon woven fabric/epoxy laminates subjected to lightning strike[J]. Composites Part A: Applied Science and Manufacturing, 2015, 79: 164-175. |