[1] H. P. Furth, Tokamak research[J]. Nuclear Fusion, 1975, 15 (3): 487- 534. [2] Igor Novak, Vladimir Pollak, Ivan Chodak. Study of surface properties of polyolefins modified by corona discharge plasma[J]. Polymer Science and Technology General, 2006, 3 (4-5): 355-364. [3] M. Ragoubi, B. George, S. Molina, et al. Effect of corona discharge treatment on mechanical and thermal properties of composites based on miscanthus fibers and polylatic air or polypropylene matrix[J]. Composites Part A: Applied Science and Manufacturing, 2012,43 (4): 675-685. [4] 林立中. 直流辉光放电冷等离子体在高分子材料表面改性上的应用[J]. 物理, 1999, 28 (7): 417-422. [5] Xiaoyan Wang, Minghua Zhou, Xinglong Jin. Apllication of glow discharge plasma for wastewater treatment[J]. Electrochimica Acta, 2012, 83 (30): 501-512. [6] 胡建行, 方志, 章程, 等. 介质阻挡放电材料表面改性研究进展[J]. 材料导报, 2007, 21 (9): 71-76. [7] X. Li, J. Li, LW. Zhang, et al. Treatment of polytetrafluroethylene films by atmospheric AR three-dielectric layers barrier discharge plasma[C]. Plasma Sciences (ICOPS), 2015 IEEE International Conference, 2015. [8] 王新新. 介质阻挡放电及其应用[J]. 高压电技术, 2009, 35 (1): 1-11. [9] Ruxi Gu, Junrong Yu, Chengcheng Hu, et al. Surface treatment of para-aramid fiber by argon dielectric barrier discharge plasma at atmospheric pressure[J]. Applied Surface Science, 2012, 258(24):10168-10714. [10] 吴锦发, 张二力, 甄汉生, 等. 微波放电等离子体源的研究[J]. 电子科学学刊, 1987, 9 (5): 458-464. [11] Andrei V. Stanishevsky, Michael J. Walock, Shane A. Catledge. Surface modification and stability of detonation nanodiamonds in microwave gas discharge plasma[J]. Applied surface Science, 2015, 357 (1): 1403-1409. [12] 邱求元, 邢素丽, 肖加余, 等. 碳纤维增强树脂基复合材料界面优化研究进展[J]. 材料导报, 2006, 11(20): 436-439. [13] Hooseok Lee, Isamu Ohsawa, Jun Takahashi, Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties[J]. Applied Surface Science, 2015, 328(15): 241-246. [14] F. Grythekai, F.K. Hansen. Surface modification of EPDM rubber by plasma treatment[J]. Langmuir, 2006, 22(14): 6109-6124. [15] J. Richard Hall, Carolyn A.L. Westerdahl, et al. Activated gas plasma surface treatment of polymers for adhesive bonding[J]. Journal of Applied Polymer Science, 1969,13(10): 2085-2096. [16] 郑安呐, 胡福增, 吴叙勤, 等. 碳纤维表面处理及其复合材料界面优化的研究Ⅰ.低温等离子处理对碳纤维表面的作用[J]. 华东理工大学学报, 1994, 20 (4): 451-458. [17] 郑安呐, 胡福增, 吴叙勤, 等. 碳纤维表面处理及其复合材料界面优化的研究Ⅳ. 等离子处理对于碳纤维表面官能团的影响[J]. 华东理工大学学报, 1994, 20 (4): 472-477. [18] 王书忠, 吴越, 骆玉祥, 等. 超高分子量聚乙烯纤维的低温等离子处理[J]. 复合材料学报, 2003, 20 (6): 98-103. [19] 顾如茜, 于俊荣, 陈蕾, 等. 低温等离子体对超高分子量聚乙烯纤维表面改性研究[J]. 高分子通报, 2011, (08): 96-102. [20] 沙春鹏, 卢少微, 赵雪莹, 等. 离子清洗技术在航空制造业中的应用及前景分析[J]. 能源研究与管理, 2014(22): 77-80. [21] Robert. F. Hicks, Steve Babayan. Plasma surface treatment of composite for bonding[Z]. US 8632651B1, 2014. [22] Jin Kook Kim, Dai Gil Lee. Characteristics of plasma surface treated composite adhesive Joints at High environmental temperature[J]. Composite Structures, 2002, 57 (4): 37-46. [23] Jin Kook Kim, Dai Gil Lee. Adhesion characteristics of plasma surface treated carbon/epoxy composite[J]. Journal of Adhesion Science and Technology, 2003, 17 (7): 1017-1037. [24] Jin Kook Kim, Dai Gil Lee. Adhesion characteristics of plasma-surface-treated carbon fiber-epoxy composite with respect to release films used during demolding[J]. Journal of Adhesion Science and Technology, 2004, 18 (4): 473-494. [25] Thomas. S. Williams, Hang Yu, Po-Ching Yeh, et al. Atmospheric pressure plasma effects on the adhesive bonding properties of stainless steel and epoxy composites[J]. Journal of Composite Materials, 2014, 48 (2): 219-233. [26] R.J. Zaldivar, J. Nokes, G. L. Steckel, et al. The effect of atmospheric plasma treatment on the chemistry, morphology and resultant bonding behavior of a pan- based carbon fiber-reinforced epoxy composite[J]. Journal of Composite Materials, 2010, 44 (2): 137-156. [27] R.J. Zaldivar, H.I. Kim, G. L. Steckel, et al. Effect of processing parameter changes on the adhesion of plasma-treated carbon fiber reinforced epoxy composites[J]. Journal of Composite Materials, 2010, 44(12): 1435-1453. [28] R.J. Zaldivar, H.I. Kim, G.L. Steckel, et al. Surface preparation for adhesive bonding of polycyanurate-based fiber-reinforce composites using atmospheric plasma treatment[J]. Journal of Applied Polymer Science, 2011, 120(2): 921-931. [29] R.J. Zaldivar, J. Nokes, D.N. Patel, et al. Effect of using oxygen, carbon dioxide, and carbon monoxide as active gases in the atmospheric plasma treatment of fiber-reinforced polycyanurate composites[J]. Journal of Applied Polymer Science, 2012,125(4): 2510-2520. [30] J.Comyn, L. Mascia, G. Xiao. Plasma-treatment of polyetheretherketone(PEEK) for adhesive bonding[J]. International Journal of Adhesion and Adhesives, 1996, 16 (2): 97-104. [31] Jan Schafer, Timo Hofmann, Jens, et al. Atmospheric-pressure plasma treatment of polyamide 6 composites for bonding with polyurethane[J]. Journal of Adhesion Science and Technology, 2015,29(17): 1-13. [32] Victor J. Law, Joseph Mohan, Feidhlim T. O′Neill, et al. Air based atmospheric pressure plasma jet removal of FreKote 710-NC prior to composite-to-composite adhesive bonding[J]. International Journal of Adhesion and Adhesives, 2014, 54(10): 72-81. [33] 林立中. 塑料制品等离子体表面处理机的原理及应用[J]. 塑料工业, 1999, 27 (6): 17-19. [34] 刘乃亮, 齐暑华, 理莎莎, 等. 难粘塑料表面低温等离子体处理研究进展[J]. 中国胶黏剂, 2009, 18 (12): 53-59. [35] Zhou Li, YT Qian, Y Zhu, et al. Influence of low temperature plasma treatment on bonding property of PEEK composite material for prosthodontics[J]. Journal of Jilin Univeristy, 2014, 40(2): 311-315. [36] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25 (1): 1-10. [37] 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2): 317-322. |