[1] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58. [2] Qian D, Wagner G J, Liu W K, et al. Mechanics of carbon nanotubes[J]. Applied Mechanics Reviews, 2002, 55:495-533. [3] 谢桂兰, 赵锦枭, 田杰, 等. 均匀化有限元预测复合材料层合板宏观有效弹性性能[J]. 玻璃钢/复合材料, 2014(7): 23-27. [4] 王静荣, 谢华清. 聚氨酯/碳纳米管复合材料的研究进行[J]. 玻璃钢/复合材料, 2008(4): 53-56. [5] 王国建, 郭建龙, 屈泽华. 碳纳米管/环氧树脂复合材料力学性能影响因素的研究[J]. 玻璃钢/复合材料, 2007(4): 18-22. [6] Thostenson E T, Ren Z, Chou T W. Advances in the science and technology of carbon nanotubes and their composites: a review[J]. Composite Science and Technology, 2001, 61: 1899-1912. [7] Baughman R H, Zakhidov A A, Deheer W A. Carbon nanotubes-the route toward applications[J]. Science, 2002, 297: 787-792. [8] 邱军, 王玉磊. 碳纳米管在聚合物基吸波复合材料中的应用[J]. 玻璃钢/复合材料, 2012(3): 80-84. [9] Ansari R, Ajori S, Arash B. Vibrations of single-and double-walled carbon nanotubes with layerwise boundary conditions: A molecular dynamics study[J]. Current Applied Physics, 2012, 12: 707-711. [10] Güven U. Transverse vibrations of single-walled carbon nanotubes with initial stress under magnetic field[J]. Composite Structures, 2014, 114: 92-98. [11] Gibson R F, Ayorinde E O, Wen Y F. Vibrations of carbon nanotubes and their composites: A review[J]. ScienceDirect, 2007, 67: 1-28. [12] 李淑萍, 王兆清. 重心插值配点法计算碳纳米管的振动频率[J]. 玻璃钢/复合材料, 2012(6): 33-36. [13] Eringen A C. On differential equations of nonlocal elasticity and solution of screw dislocation and surface waves[J]. Journal of Applied Physics, 1983, 54: 4703-4710. [14] Eringen A C. Nonlocal continuum field theories[M]. New York: Springer-Verlag, 2002. [15] Wang B, Deng Z, Ouyang H, et al. Free vibration of wavy single-walled fluid-conveying carbon nanotubes in multi-physics fields[J]. Applied Mathematical Modelling, 2015. [16] Kiani K. A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect[J]. International Journal of Mechanical Sciences, 2010, 52: 1343-1356. [17] Wu C P, Lai W W. Free vibration of an embedded single-walled carbon nanotube with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method [J]. Physica E, 2015, 68: 8-21. [18] Friswell M I, Adhikari S, Lei Y. Vibration analysis of beams with non-local foundations using the finite element method[J]. International Journal for Numerical Methods in Engineering, 2007, 71: 1365-1386. [19] Wang C, Zhang Y, He X. Vibration of nonlocal Timoshenko beams[J]. Nanotechnology, 2007, 18.
|