[1] 李飞. 复合材料新型连接技术及在桁架中的应用研究[D]. 南京: 解放军理工大学博士学位论文, 2012. [2] 赵启林, 李飞, 徐康. 新型复合材料桁架结构静载试验研究[J]. FRP-7年会, 2011: 33-45. [3] Liu P F, Zhao Q L, Li F, et al. Research on the Mechanical Properties of a Glass Fiber Reinforced Polymer-Steel Combined Truss Structure[J]. The Scientic World Journal, 2014, 11: 104-117. [4] 苗大胜. 纤维增强树脂基复合材料组合空间桁架桥连接技术和结构性能研究[D]. 南京: 解放军理工大学硕士学位论文, 2013. [5] Zhang D, Zhao Q L, Huang Y, et al. Flexural properties of a lightweight hybrid FRP-aluminum modular space truss bridge system[J]. Composite Structures, 2014, 108(0): 600-615. [6] Deng A Z, Zhao Q L, Li F, et al. Research on bearing capacity of single tooth to composite pre-tightened teeth connection[J]. Journal of Reinforced Plastics and Composites, 2013, 32(21):1603-1613. [7] 徐龙星. 复合材料预紧力齿连接承载力计算方法与试验研究[D]. 南京: 解放军理工大学硕士学位论文, 2014. [8] 马毓, 李飞, 赵启林. 复合材料构件机械连接接头破坏模式与机理[J]. 解放军理工大学学报, 2010,12: 10-15. [9] 崔浩, 李玉龙, 刘元镛, 等. 基于粘聚区模型的含填充区复合材料接头失效数值模拟[J]. 复合材料学报, 2010,27(2): 161-168. [10] Dugdale DS. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8: 100-104. [11] Barenblatt G. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55-129. [12] Hillerborg A, Modeer M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6: 773-782. [13] 叶强. 层合复合材料的粘聚区模型及其应用研究[D]. 南京: 南京航空航天大学博士论文, 2012. [14] B. Blaysat A. B., J.P.M. Hoefnagels, et al. Interface debonding characterization by image correlation integrated with Double Cantilever Beam kinematics[J]. International Journal of Solids and Structures, 2014,30: 1-13. [15] 叶强, 陈普会. 复合材料粘聚区模型的强度参数预测[J]. 固体力学学报, 2012,33(6): 566-573. [16] Zhu.Y, Liechti.K.M, Ravi-Chandar. Direct extraction of rate-dependent traction-separation laws for polyurea/steel interfaces[J]. Int. J. Solids Struct., 2009, 46: 31-51. [17] Kim HG, Lee KW. A study on the influence of measurement location and regularization on the evaluation of boundary tractions by inverse finite element method[J]. Finite Elem Anal Des., 2009,45: 569-582. [18] Jae-Chul Oh, Hyun-Gyu Kim. Inverse estimation of cohesive zone laws from experimentally measured displacements for the quasi-static mode I fracture of PMMA[J]. Engineering Fracture Mechanics, 2013,99: 118-131. [19] Elices, M., Guinea, G.V., Gómez, J., et al. The cohesive zone model: advantages, limitations and challenges[J]. Eng. Fract. Mech, 2002, 69: 137-163. [20] Shen, B., Paulino, G.H.. Identication of cohesive zone model and elastic parameters of fiber-reinforced cementitious composites using digital image correlation and a hybrid inverse technique[J]. Cement Concr. Compos., 2011, 33: 572-585. [21] Cropper, W.P., Holm, J.A., Miller, C. J.. An inverse analysis of a matrix population model using a genetic algorithm[J]. Ecol. Inf., 2012, 7 (1): 41-45. [22] Amaya, K., Ridha, M., Aoki, S.. Corrosion pattern detection by multi-step genetic algorithm. Inverse Probl[J]. Eng. Mech., 2003, 5: 213-219. [23] Jin, Z.Y., Cui, Z.S.. Investigation on strain dependence of dynamic recrystallization behavior using an inverse analysis method[J]. Mater. Sci. Eng., 2010, 527: 3111-3119. [24] Gu, Y., Nakamura, T., Prchlik, L., Sampath, et al. Micro-indentation and inverse analysis to characterize elastic-plastic graded materials[J]. Mater. Sci.Eng., 2003, 2: 223-233. [25] Corigliano, A., Mariani, S., Orsatti, B.. Identification of Gurson-Tvergaard material model parameters via Kalman filtering technique-I[J]. Theory. Int. J. Fract., 2004, 104: 347-371. [26] Giulio Alfano. On the infiuence of the shape of the interface law on the application of cohesive-zone models[J]. Composite science and technology., 2006, 66: 723-730. [27] Hilleborg A, Mode′er M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracturemechanics and finite elements[J]. Cem Concr Res., 1976, 6: 773-782. [28] Mi Y, Crisfield MA, Hellweg HB, et al. Finite element method and progressive failure modelling of composite structures. Computational plasticity: Fundamentals and applications Part 1[C]. Barcelona: CIMNE; 1997. [29] Mi Y, Crisfield MA, Davies GAO, et al. Progressive delamination using interface elements[J]. J Compos Mater., 1998, 32(14): 1246-1272. [30] Alfano G, Crisfield MA. Finite element interface models for the delamination analysis of laminated composites: Mechanical andcomputational issues[J]. Int J Numer Meth Eng., 2001, 50(7): 1701-1736. [31] Allix O, Lade veze P, Corigliano A. Damage analysis of interlaminar fracture specimens[J]. Compos Struct.,1995, 31(1): 61-74. [32] Allix O, Corigliano A. Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens [J]. Int J Fract., 1996, 77: 111-140. [33] Champaney L, Valoroso N. Evaluation of interface models for the analysis of non-linear behaviour of adhesively bonded joints. Proceedings of the European conference on computational mechanics ECCM-2001[C]. CracowPoland, 2001. [34] Needleman A. An analysis of tensile decohesion along an interface[J]. J Mech Phys Solids, 1990, 38(3): 289-324. [35] Chandra N, Li H, Shet C, et al. Some issues in the application of cohesive zone models for metal-ceramic interfaces[J]. Int J Solids Struct., 2002, 39(10): 2827-2855. [36] Tvergaard V, Hutchinson JW. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids[J]. J Mech Phys Solids, 1992, 40(6): 1377-1397. [37] Tvergaard V, Hutchinson JW. The infiuence of plasticity on mixed mode interface toughness[J]. J Mech Phys Solids,1993, 41(6): 1119-1135. [38] R.D.S.G. Campilho, et al. Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer[J]. International Journal of Adhesion & Adhesives, 2013, 44 : 48-56. [39] Ridha M, Tan VBC, Tay TE. Traction-separation laws for progressive failure of a bonded scarf repair of composite panel[J]. Compos. Struct., 2010, 93: 1239-1245. [40] Jousset P., Rachik M.. Comparison and evalua-tion of two types of cohesive zone models for the finite element analysis of fracture propagation in industrial bonded structures[J]. Engineering Fracture Mechanics, 2014,132: 48-69. [41] Xu Y J , Li X, Wang X, et al. Inverse parameter identication of cohesive zone model for simulating mixed-mode crack propagation[J]. International Journal of Solids and Structures, 2014, 51: 2400-2410. [42] Hattiangadi A, Siegmund T. A thermomechanical cohesive zone model for bridged delamination cracks[J]. J Mech Phys Solids., 2004, 52(3): 533-566. [43] Love BM, Batra RC. Effect of particulate/matrix debonding on the formation of adiabatic shear bands[J]. Int J Mech Sci., 2010, 52(2): 386-397. [44] Sun S Y, Chen H R. Quasi-static and dynamic fracture behavior of composite sandwich beamswith a visco-elastic interface crack[J]. Composites Science and Technology, 2010, (70): 1011-1016. [45] Caner F C, Bazant Z P. Size effect on strength of laminate-foam sandwich plates: Finite element analysis with interface fracture[J]. Composites: Part B, 2009,(40): 337-348. [46] Li G, Li C. Assessment of debond simulation and cohesive zone length in a bonded composite joint[J]. Composites: Part B, 2015,69: 359-368. [47] Li F, Zhao Q L, Chen H S, et al. Prediction of tensile capacity based on CZM of bond FRP tendon anchorage[J]. Composite structures, 2010, 9: 105-110. [48] Zhao Q L, Li F, Sen H. Analysis of Interfacial Bond Stress of Bonding Anchors for FRP Tendon[J]. CICE, 2010, 134-140. [49] Turon A, Davila CG, Camanho PP, et al. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models[J]. Eng Fract Mech., 2007, 74(10): 1665-1682. [50] Chen J, New A. Application of decohesive model with mixed damage scale in fracture analysis of composite materials[J]. Fatigue Fracture Engineering Materials Structures, 2001,20(2):761-769. [51] Peerlings R H J, Brekelmans W A M, Geers M G D. Gradient- enhanced damage modeling of high-cycle fatigue[J]. International Journal for Numerical Methods in Engineering, 2000,49(12): 1547-1569. [52] Robinson P, Galvanetto U, Tumino D, et al. Numerical simulation of fatigue-driven delamination using interface elements[J]. International Journal for Numerical Methods in Engineering, 2005, 63(13): 1824-1848. [53] Munoz J J, Galvanetto U, Robinson P. On the numerical simulation of fatigue driven delamination with interface elements[J]. International Journal of Fatigue, 2006, 28(10): 1136-1146. [54] Yang Q, Shim D, Spearing S A. A cohesive model for low cycl fatigue life prediction of sloder joints[J]. Microelectron Engineering, 2004, 75(1): 85-95. [55] Roe K, Siegmund T. An irrecersible cohesive zone model for interface fatigue crack growth simulation[J]. Engineering Fracture Mechanics, 2003, 70(2): 209-232. [56] Nguyen O, Repetto E, Ortiz M, et al. A cohesive model for fatigue crack growth[J]. International Journal of Fracture, 2001,110(4): 351-369. [57] Hillerborg A, Modeer M, Petersson PE. Analysis of crack formation and growth in concrete by means of fracture mechanics and finite elements[J]. Cement Concrete Res., 1976, 6: 773-782. [58] Planas J, Elices M. Nonlinear fracture of cohesive materials[J]. Int J Fract, 1991, 51: 139-157. [59] Smith E. The effect of the stress-relative displacement law on failure predictions using the cohesive zone model[J]. Int J Fract, 1999, 99: 41-51. [60] Williams JG, Hadavinia H. Analytical solutions for cohesive zone models[J]. J Mech Phys Solids, 2002, 50: 809-825. |