[1] 韩晓宁, 陈希, 王娇艳. 三维海战场雷达探测可视化研究与实现[J]. 计算机科学, 2013, 40(3): 147-150. [2] 刘永, 杨健, 朱剑, 等. 反舰导弹制导技术发展综述[J]. 计算机仿真, 2016, 33(2): 10-16. [3] 朱炜, 郭航. 现代舰船隐身技术的若干方法研究[J]. 舰船电子工程, 2014, 34(12): 22-26. [4] 朱炜, 陈炜, 冯洋. 水面舰艇雷达波隐身技术与总体设计[J]. 中国舰船研究, 2015, 10(3): 1-6, 56. [5] 齐宇, 何山, 史有强. 防腐蚀型宽频带雷达吸波涂料研究[J]. 航空材料学报, 2014, 34(5): 75-80. [6] 何山, 李业华, 周淳. 一种多层胶板雷达吸波材料[J]. 航空材料学报, 2016, 36(4): 41-46. [7] 何翔, 李永清, 朱锡. 聚氨酯基吸波涂层的仿真分析与实验验证[J]. 电子元件与材料, 2017, 36(3): 77-83. [8] 赵素玲, 高芳乾, 何惊华. 形状控制剂对片状铁粉结构及电磁性能的影响[J]. 武汉理工大学学报, 2012, 34(4): 8-11, 19. [9] 赵立英, 曾凡聪, 廖应峰, 等. 球磨时间对片型羰基铁粉微波吸收剂结构和性能的影响[J]. 中南大学学报(自然科学版), 2015, 46(1): 94-98. [10] Omid K, Morteza Z S, Karl A, et al. The structural, magnetic and microwave properties of spherical and flake shaped carbonyl iron particles as thin multilayer microwave absorbers[J]. Journal of Magnetism and Magnetic Materials, 2017, 428: 28-35. [11] 伍倪燕, 程艳奎, 刘存平, 等. SiO2包覆片状羰基铁粉的制备及电磁性能[J]. 磁性材料及器件, 2016, 47(1): 22-26. [12] Sergey S M, Andrey N L, Sergey A M, et al. Corrosion-resistive magnetic powder Fe@SiO2 for microwave applications[J]. Journal of Alloys and Compounds, 2017, 706: 267-273. [13] 刘顺华, 刘军民, 董星龙, 等. 电磁波屏蔽及吸波材料[M]. 北京: 化学工业出版社, 2013. [14] 段玉平, 杨洋, 冀志江, 等. MnO2/CB/环氧树脂双层复合材料的吸波特性研究[J]. 材料科学与工艺, 2009(2): 255-258. [15] 姚剑平, 江建军, 别少伟, 等. 羰基铁粉吸波涂层的优化设计[J]. 电子元件与材料, 2012(1): 29-31. [16] Junpeng Wang, Jun Wang, Renxin Xu, et al. Enhanced microwave absorption properties of epoxy composites reinforced with Fe50Ni50-functionalized graphene[J]. Journal of Alloys and Compounds, 2015, 653: 14-21. [17] Pinho M S, Gregori M L, Nunes R C R, et al. Aging effect on the reflectivity measurements of polychloroprene matrices containing carbon black and carbonyl-iron powder[J]. Polymer Degradation and Stability, 2001, 73(1): 1-5. [18] Vinayasree S, Soloman M A, Sunny V, et al. Flexible microwave absorbers based on barium hexaferrite, carbon black, and nitrile rubber for 2-12 GHz applications[J]. Journal of Applied Physics, 2014, 116(2): 024902. [19] Bin Zhang, Jun Wang, Junpeng Wang, et al. Microwave absorption properties of lightweight absorber based on Fe50Ni50-coated poly(acrylonitrile) microspheres and reduced graphene oxide composites[J]. Journal of Magnetism and Magnetic Materials, 2016, 413: 81-88. [20] Junpeng Wang, Jun Wang, Bin Zhang, et al. Combined use of lightweight magnetic Fe3O4-coated hollow glass spheres and electrically conductive reduced graphene oxide in an epoxy matrix for microwave absorption[J]. Journal of Magnetism and Magnetic Materials, 2016, 401: 209-216. [21] Juan Feng, Fangzhao Pu, Zhaoxin Li, et al. Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber[J]. Carbon, 2016, 104: 214-225.
|