[1] 沈军, 谢怀勤. 航空用复合材料的研究与应用进展[J]. 玻璃钢/复合材料, 2006(5): 48-54. [2] 孙振起, 吴安如. 先进复合材料在飞机结构中的应用[J]. 材料导报, 2015, 29(11): 61-64. [3] Cantwell W J, Morton J. Significance of damage and defects and their detection in composite materials. A review[J]. Journal of Strain Analysis for Engineering Design, 1992, 27(1): 29-42. [4] Shyr T W, Pan Y H. Impact resistance and damage characteristics of composite laminates[J]. Composite Structures, 2003, 62(2): 193-203. [5] Prichard J C, Hogg P J. The role of impact damage in post-impact compression testing[J]. Composites, 1990, 21(6): 503-511. [6] Abrate S. Impact on Laminated Composite Materials[J]. Applied Mechanics Reviews, 1991, 44(4): 155-190. [7] Polimeno U, Meo M. Detecting barely visible impact damage detection on aircraft composites structures[J]. Composite Structures, 2009, 91(4): 398-402. [8] Kumar P, Rai B. Delaminations of barely visible impact damage in CFRP laminates[J]. Composite Structures, 1993, 23(4): 313-318. [9] 沈真, 陈普会, 刘俊石, 等. 含缺陷复合材料层压板的压缩破坏机理[J]. 航空学报, 1991, 12(3): 105-113. [10] Davila C, Jaunky N, Goswami S. Failure Criteria for FRP Laminates in Plane Stress[J]. Journal of Composite Materials, 2005, 81(5): 404-408. [11] Hinton M J, Kaddour A S, Soden P D. A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence[J]. Composites Science & Technology, 2002, 62(12-13): 1725-1797. [12] Moura M F S F D, Marques A T. Prediction of low velocity impact damage in carbon-epoxy laminates[J]. Composites Part A Applied Science & Manufacturing, 2002, 33(3): 361-368. [13] 屈天骄, 郑锡涛, 范献银, 等. 复合材料层合板低速冲击损伤影响因素分析[J]. 航空材料学报, 2011, 31(6): 81-86. [14] Nettles A T, Douglas M J. A Comparison of Quasi-Static Indentation to Low-Velocity Impact[J]. 2000. [15] 闫丽, 安学锋, 蔡建丽, 等. 复合材料层压板低速冲击和准静态压痕损伤等效性的研究[J]. 航空材料学报, 2011, 31(3): 71-75. [16] Der A J F a T F, Atf G D O. Boeing Composite Airframe Damage Tolerance and Service Experience[J]. 2006. [17] 沈真, 杨胜春, 陈普会. 复合材料层压板抗冲击行为及表征方法的实验研究[J]. 复合材料学报, 2008(5): 7-15. [18] Castaings M, Cawley P, Farlow R, et al. Single Sided Inspection of Composite Materials Using Air Coupled Ultrasound[J]. Journal of Nondestructive Evaluation, 1998, 17(1): 37-45. [19] Wood K. In-situ composite repair builds on basics[J]. High Performance Composites, 2008. [20] Williams T. Care and Repair of Advanced Composites[J]. 2013. [21] Blomme E, Bulcaen D, Declercq F. Air-coupled ultrasonic NDE: experiments in the frequency range 750kHz-2MHz[J]. Ndt & E International, 2002, 35(7): 417-426. [22] Peters J J, Barnard D J, Hsu D K. Development of a Fieldable Air-Coupled Ultrasonic Inspection System[J]. 2004, 700(1): 1368-1375. [23] Palmer S B, Dixon S. Industrially viable non-contact ultrasound[J]. Or Insight, 2003, 45(3): 211-217. [24] Chimenti D E, Song J. Performance of Spherically Focused Air-Coupled Ultrasonic Transducers[C]//Review of Progress in Quantitative Nondestructive Evaluation. 2007: 862-869. [25] Chen Y S, Hung Y Y, Ng S P, et al. Review and comparison of shearography and active thermography for nondestructive testing and evaluation (NDT&E)[C]//International Conference on Experimental Mechnics 2008 and Seventh Asian Conference on Experimental Mechanics. 2008. [26] Ru°ek R, Lohonka R, Jironcˇ J. Ultrasonic C-Scan and shearography NDI techniques evaluation of impact defects identification[J]. Ndt & E International, 2006, 39(2): 132-142. [27] 汪风宇. 飞机复合材料构件的激光错位散斑检测技术研究[D]. 南昌: 南昌航空大学, 2012. [28] 栗丽, 晏雄. 复合材料损伤失效的声发射检测研究进展[J]. 材料导报, 2013, 27(17): 19-22. [29] 徐丽, 张幸红, 韩杰才. 航空航天复合材料无损检测研究现状[J]. 材料导报, 2005, 19(8): 79-82. [30] 陈维业, 胡杰, 刘光辉, 等. 复合材料胶接修补界面损伤演化声发射监测[J]. 玻璃钢/复合材料, 2016(7): 9-13. [31] Naito K, Kagawa Y, Kurihara K. Dielectric properties and noncontact damage detection of plain-woven fabric glass fiber reinforced epoxy matrix composites using millimeter wavelength microwave[J]. Composite Structures, 2012, 94(2): 695-701. [32] Armstrong K B, Barrett R T. Care and repair of advanced composites[M]. Society of Automotive Engineers, 2005. [33] Mccarthy M A, Lawlor V P, Stanley W F. An experimental study of bolt-hole clearance effects in single-lap, multi-bolt composite joint[J]. Composite Materials, 2005, 39: 799-825. [34] Lawlor V P, Mccarthy M A, Stanley W F. An experimental study of bolt-hole clearance effects in double-lap, multi-bolt composite joints[J]. Composite Structures, 2005, 71: 176-190. [35] 张阿盈, 许洪明, 陈昊. 复合材料层压板铆接修补剩余强度评估[J]. 机械强度, 2016(1):105-109. [36] Katnam K B, Silva L F M D, Young T M. Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities[J]. Progress in Aerospace Sciences, 2013, 61: 26-42. [37] Bouiadjra B B, Bouanani M F, Albedah A, et al. Comparison between rectangular and trapezoidal bonded composite repairs in aircraft structures: A numerical analysis[J]. Materials & Design, 2011, 32(6): 3161-3166. [38] Wang C H, Gunnion A J. Optimum shapes of scarf repairs[J]. Composites Part A Applied Science & Manufacturing, 2009, 40(9): 1407-1418. [39] Ahmad J. Machining of Polymer Composites[M]. Springer US, 2009. [40] Vlkermeyer F, Fischer F, Stute U, et al. Laser-based approach for bonded repair of carbon fiber reinforced plastics[J]. 2011. [41] 梁重云, 曾竟成, 肖加余, 等. 复合材料补片胶接修补研究进展[J]. 宇航材料工艺, 2002, 32(4): 7-11. [42] 孟凡颢, 陈绍杰, 董善艳, 等. 复合材料损伤结构胶接补强修补分析及设计[J]. 飞机设计, 2002, (1): 18-21. [43] 程小全, 赵文漪, 高宇剑, 等. 胶粘剂性能对挖补修理层合板拉伸性能的影响[J]. 北京航空航天大学学报, 2013, 39(9): 1144-1149. [44] 汪源龙, 程小全, 侯卫国, 等. 挖补修理复合材料层合板拉伸性能研究[J]. 工程力学, 2012, 29(7): 328-334. [45] 曲春艳, 王德志, 冯浩, 等. 双马来酰亚胺基碳纤维复合材料胶接用结构胶膜[C]//航空装备及先进制造技术国际学术会议. 2007: 118-122. [46] 徐建新, 杨维嫣, 窦晨, 等. 基于遗传算法的复合材料层合板修理方案优化[J]. 中国民航大学学报, 2013, 31(1): 76-81. [47] 李雁北. 蜂窝夹层结构修补参数的分析[D]. 北京: 北京航空航天大学, 2000. [48] Albedah A, Bouiadjra B B, Aminallah L, et al. Numerical analysis of the effect of thermal residual stresses on the performances of bonded composite repairs in aircraft structures[J]. Composites Part B Engineering, 2011, 42(3): 511-516. [49] Rachid M, Serier B, Bouiadjra B B, et al. Numerical analysis of the patch shape effects on the performances of bonded composite repair in aircraft structures[J]. Composites Part B Engineering, 2012, 43(2): 391-397. [50] 王跃全. 飞机复合材料结构修理设计渐进损伤分析[D]. 南京: 南京航空航天大学, 2010. [51] 许陆文, 代永朝. 飞机结构战伤复合材料微波快速抢修技术[J]. 航空工程与维修, 2002(3): 17-19. [52] 代永朝, 郑立胜. 飞机微波固化粘接修补技术试验研究[J]. 粘接, 2008, 29(6): 38-41. [53] 陈浩, 刘玉亭, 刘成武, 等. 光固化复合材料预浸料修理补片的研制[J]. 兵器材料科学与工程, 2008, 31(2): 91-94. [54] 范兴, 张丹峰. 电子束固化在军机先进复合材料结构修理中的应用探讨[C]//2013工业与信息化产品环境技术研讨会. 2013. [55] Russell A J, Bowers C P. Resin requirements for successful repair of delaminations[J]. 1991. [56] Slattery P G, Mccarthy C T, O′higgins R M. Development of a novel cyanoacrylate injection repair procedure for composites[J]. Composite Structures, 2016, 153: 1-11. [57] Bauer A, Thunga M, Obusek K, et al. Bisphenol E cyanate ester as a novel resin for repairing BMI/carbon fiber composites: Influence of cure temperature on adhesive bond strength[J]. Polymer, 2013, 54(15): 3994-4002. [58] Thunga M, Bauer A, Obusek K, et al. Injection repair of carbon fiber/bismaleimide composite panels with bisphenol E cyanate ester resin[J]. Composites Science & Technology, 2014, 100(21): 174-181.
|