玻璃钢/复合材料 ›› 2017, Vol. 0 ›› Issue (2): 38-43.

• 基础研究 • 上一篇    下一篇

基于模态应变能法功能梯度Euler-Bernoulli梁和Timoshenko梁模型对损伤识别的影响分析

岳世燕1, 2, 杨真真3, 谢 峰1, 黄立新1, 4*   

  1. 1.广西大学土木建筑工程学院,南宁530004;
    2.成都理工大学工程技术学院,乐山641000;
    3.许昌学院土木工程学院,许昌461000;
    4.广西大学工程防灾与结构安全教育部重点实验室,南宁530004
  • 收稿日期:2016-09-28 出版日期:2017-02-28 发布日期:2017-02-28
  • 通讯作者: 黄立新(1964-),男,博士,教授,博导,主要从事复合材料结构与力学等方面的研究,gxuhuanglixin@163.com。
  • 作者简介:岳世燕(1991-), 女,硕士,助教,主要从事工程结构与力学等方面的研究。
  • 基金资助:
    国家自然科学基金(11262002)

ANALYSIS ON THE EFFECT OF EULER-BERNOULLI BEAM MODEL AND TIMOSHENKO BEAM MODEL ON DAMAGE IDENTIFICATION BASED ON MODAL STRAIN ENERGY METHOD

YUE Shi-yan1,2, YANG Zhen-zhen3, XIE Feng1 , HUANG Li-xin1,4*   

  1. 1.School of Civil Engineering, Guangxi University, Nanning 530004, China;
    2.The Engineering &
    Technical College of Chengdu University of Technology, Leshan 614000, China;
    3.School of Civil Engineering, Xuchang University, Xuchang 461000, China;
    4.The Key Laboratory of Disaster Prevention and Structural Safety of the Education Ministry, Guangxi University, Nanning 530004, China
  • Received:2016-09-28 Online:2017-02-28 Published:2017-02-28

摘要: 随着功能梯度梁的跨高比从小(厚梁)变到大(薄梁),梁的变形受到剪切变形的影响就会从大变到小。为了准确分析功能梯度梁的变形,跨高比小的厚梁采用Timoshenko梁模型,而跨高比大的薄梁采用Euler-Bernoulli梁模型。采用这两种梁模型进行功能梯度梁自由振动的有限元计算,分析单元刚度矩阵、质量矩阵和模态阵型等存在的差异。通过数值算例,研究了这两种梁模型的差异对模态应变能法的损伤识别指标的影响。对于厚梁,Timoshenko梁模型的损伤指标优于Euler-Bernoulli梁模型;对于很薄的梁(例如,l/h=25时的薄梁),Euler-Bernoulli梁模型的损伤指标优于Timoshenko梁模型。

关键词: 功能梯度材料, Euler-Bernoulli梁模型, Timoshenko梁模型, 模态应变能, 损伤识别

Abstract: With the change of span-depth ratio of functionally graded (FG) beam from small (thick beam) to large (thin beam), the effect of shear deformation on the beam deformation decrease. In order to analyze the deformation of the beam accurately, Timoshenko beam model is used for the thick beam with small span-depth ratio and Euler-Bernoulli beam model is used for thin beam large span-depth ratio. In this paper, free vibration is calculated based on the two beam models by a finite element method (FEM) to further analysis on the difference between element stiffness matrix, mass matrix and modal mode. Numerical examples are given to analyze the effect of those differences on the damage identification index. The damage indices of Timoshenko beam model are better than those of Euler-Bernoulli beam model in thick beam, while the damage indices of Euler-Bernoulli beam model are better than those of Timoshenko beam model in thin beam (for example l/h=25).

Key words: functionally graded material, Euler-Bernoulli beam model, Timoshenko beam model, modal strain energy, damage identification

中图分类号: