[1] Pan Y, Lorga L, Pelegri A A. Numerical generation of a random chopped fiber composite RVE and its elastic properties[J]. Composites Science and Technology, 2008, 68(13): 2792-2798. [2] Meng L B, Jin G C, Yao X F, et al. 3D full-field deformation monitoring of fiber composite pressure vessel using 3D digital speckle correlation method[J]. Polymer testing, 2006, 25(1): 42-48. [3] Shen H, Nutt S, Hull D. Direct observation and measurement of fiber architecture in short fiber-polymer composite foam through micro-CT imaging[J]. Composites Science and Technology, 2004, 64(13): 2113-2120. [4] Li W, Swain M V, Li Q, et al. Towards automated 3D finite element modeling of direct fiber reinforced composite dental bridge[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2005, 74(1): 520-528. [5] Wang X, Hu B, Feng Y, et al. Low velocity impact properties of 3D woven basalt/aramid hybrid composites[J]. Composites Science and Technology, 2008, 68(2): 444-450. [6] Lomov S V, Bogdanovich A E, Ivanov D S, et al. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 1: Materials, methods and principal results[J]. Composites part a: applied science and manufacturing, 2009, 40(8): 1134-1143. [7] Taya M, Kim W J, Ono K. Piezoresistivity of a short fiber/elastomer matrix composite[J]. Mechanics of materials, 1998, 28(1): 53-59. [8] Scida D, Aboura Z, Benzeggagh M L, et al. A micromechanics model for 3D elasticity and failure of woven-fibre composite materials[J]. Composites Science and Technology, 1999, 59(4): 505-517. [9] Callus P J, Mouritz A P, Bannister M K, et al. Tensile properties and failure mechanisms of 3D woven GRP composites[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(11): 1277- 1287. [10] Hufenbach W, Bhm R, Thieme M, et al. Polypropylene/glass fibre 3D-textile reinforced composites for automotive applications[J]. Materials & Design, 2011, 32(3): 1468-1476. [11] Okabe T, Takeda N, Kamoshida Y, et al. A 3D shear-lag model considering micro-damage and statistical strength prediction of unidirectional fiber-reinforced composites[J]. Composites science and technology, 2001, 61(12): 1773-1787. [12] Aly-Hassan M S, Hatta H, Wakayama S, et al. Comparison of 2D and 3D carbon/carbon composites with respect to damage and fracture resistance[J]. Carbon, 2003, 41(5): 1069-1078. [13] Mouritz A P, Bannister M K, Falzon P J, et al. Review of applications for advanced three-dimensional fibre textile composites[J]. Composites Part A: applied science and manufacturing, 1999, 30(12): 1445-1461. [14] Mouritz A P. Tensile fatigue properties of 3D composites with through-thickness reinforcement[J]. Composites science and technology, 2008, 68(12): 2503-2510. [15] Tsai K H, Chiu C H, Wu T H. Fatigue behavior of 3D multi-layer angle interlock woven composite plates[J]. Composites science and technology, 2000, 60(2): 241-248. [16] 张文姣. 纤维增强复合材料的疲劳损伤模型及分析方法[D]. 哈尔滨: 哈尔滨工业大学, 2015. [17] 潘小娟, 郭领军, 李贺军, 等. 国内外C/C复合材料疲劳性能的研究进展[J]. 材料导报, 2011(07): 63-66. [18] 杨忠清. 玻璃纤维增强树脂基复合材料疲劳行为研究[D]. 南京: 南京航空航天大学, 2008. [19] Kadlec M, Nováková L, Mlch I, et al. Fatigue delamination of a carbon fabric/epoxy laminate with carbon nanotubes[J]. Composites Science and Technology, 2016, 131: 32-39. [20] 冯古雨, 曹海建, 钱坤. 三维浅交弯联机织复合材料弯曲性能的有限元分析[J]. 宇航材料工艺, 2015(06): 22-26. [21] 全国纤维增强塑料标准化技术委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005-2005[S]. 北京 : 中国标准出版社, 2005: 371-376. |